783. The Chemotherapy of Schistosomiasis. Part III.* $\mathrm{N}-\mathrm{p}$-Aminophenoxyalkyl-amides, -imides, and -sulphonamides.

By J. N. Ashley, R. F. Collins, M. Davis, and N. E. Sirett.
Many acyl- and diacyl-aminoalkyl ethers of p-aminophenol have been prepared by a number of routes. Some of these compounds are effective schistosomicides.
After the discovery (see Part II *) that many simple ethers of p-aminophenol were curative against S. mansoni infections in mice, some basic alkyl ethers were examined. These were ineffective, but an intermediate in their preparation, $1-p$-aminophenoxy- 5 -phthalimidopentane (IV; $n=5$), showed high activity. This unexpected result led us to prepare a large number of related amides, imides, and sulphonamides, some of which are now reported. Many others have been briefly described in patent specifications ${ }^{1}$ and are therefore omitted from this paper. The biological results will be published elsewhere. ${ }^{2}$

* Part II, Ashley, Collins, Davis, and Sirett, J., 1959, 897.
${ }^{1}$ May and Baker Ltd., B.P. 769,706; 778,919; 808,952.
${ }^{2}$ Collins, Davis, Edge, and Turnbull, J. Pharm. Pharmacol., 1959, in the press.

The homologous series of $1-p$-nitrophenoxy- ω-phthalimidoalkanes (III) was prepared (as far as the decane) by condensing the appropriate ω-phthalimidoalkyl bromide (I) with potassium p-nitrophenoxide. Catalytic reduction over Raney nickel afforded the amines (IV) in high yield. All the amines in this series formed bright yellow crystals giving almost colourless, dilute solutions in organic solvents, from which they were precipitated initially in a colourless amorphous form which became yellow as crystallisation set in. Reduction of the nitro-group of the ether (III) over platinum oxide under pressure invariably resulted in some reduction of the phthalimide ring. In one case, when the reduction was allowed to proceed to completion, the hexahydro-derivative (IXc) was isolated in good yield. The phthalimide base (IV; $n=5$) with tin and hydrochloric acid gave the phthalimidine (Xc).

An alternative method used for the preparation of the phthalimide (III; $n=5$) and for the analogous camphorimide, phthalylhydrazide, 2 -pyridone, thiazolidine-2,4-dione, 2,3-dihydro-3-oxobenzisothiazole, butane-1,4-sultam, and naphthalene-1,8-sultam derivatives was the reaction of 5 - p-nitrophenoxypentyl bromide (II) or iodide with the appropriate cyclic amide or imide. In the case of 2,3-dihydro-3-oxobenzisothiazole ($\mathrm{XI} ; \mathrm{R}=\mathrm{H}$), condensation of the sodium salt with 5 - p-nitrophenoxypentyl bromide in 2-ethoxyethanol gave the N-alkylated derivative (XIa), the structure of which was confirmed by oxidation with hydrogen peroxide to the known saccharin compound (XIIa). ${ }^{1}$ However, when the condensation was effected by using potassium carbonate in acetone, the product was an isomer of (XIIa), probably the O-ether (XIIIa). Both N - and O-alkyl-2,3-dihydro- 3 -oxobenzisothiazoles are known. ${ }^{3}$ Since chemical reduction of the nitro-group also appeared to rupture the heterocyclic ring, ${ }^{4}$ the acetamido-derivative (XIb) was made from 5 - p acetamidophenoxypentyl bromide and was hydrolysed with acid to the required amine (XIc).

In a third route employed for the 3 -nitrophthalimide, tetrachlorophthalimide, and homophthalimide analogues of (III; $n=5$), the phthalimide was hydrolysed with hydrazine to 1 -amino- 5 - p-nitrophenoxypentane $(\mathrm{V} ; n=5$) which was fused with the appropriate cyclic anhydride. 5-Amino-1-p-nitrophenoxypentane served also as an intermediate for the preparation of a large number of aliphatic, aromatic, and heterocyclic amides (VII; $n=5$) and sulphonamides, most of which were made by standard acylation procedures. ${ }^{1}$ The maleamic acid (VII; $n=5 ; \mathrm{R}=\mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{H}$) obtained from nitro-amine ($\mathrm{V} ; n=5$) and maleic anhydride was cyclised to the maleimide by acetic anhydride and sodium acetate, ${ }^{5}$ and the nitro-group was reduced with stannous chloride. The maleimide ring of the base obtained was very sensitive to alkali, readily opening to give the maleamic acid (VIII: $n=5 ; \mathrm{R}=\mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{H}$). The analogous glutaramic acid (XVa; $\mathrm{R}^{\prime}=$ H), similarly prepared, was best cyclised to the imide (XVIa) by acetyl chloride. ${ }^{6}$ When

[^0]

$\mathrm{H}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{R}$.
Formula
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{2}$
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{2}, \mathrm{CH}_{4} \mathrm{O}_{3} \mathrm{~S}$
$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}_{2}$
$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}_{2}, \mathrm{CH}_{4} \mathrm{O}_{3} \mathrm{~S}$
$\mathrm{C}_{18} \mathrm{C}_{18} \mathrm{O}_{3} \mathrm{~N}_{2}$
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~N}_{2}$
$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Cl}_{4}$
$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~N}_{3}$
$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~N}_{3}, \mathrm{CH}_{4} \mathrm{O}_{3} \mathrm{~S}$
$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{3}$
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}_{2}, \mathrm{CH}_{4} \mathrm{O}_{3} \mathrm{~S}$
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}_{2}$
$\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~N}_{2}, 0 \cdot 5 \mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{3}$

Ω

0

$\stackrel{\infty}{\dot{\circ}} \quad \stackrel{\text { ¢ }}{\infty}$
0

曻

n	R
5	Glutarimido
5	β-Ethyl- β-methylglutarimido
5	Hexahydro-2,4,6-trioxopyr-

≈ 12121.2
α-Phthalimidobenzyl

स स 1010
$\mathrm{NH} \cdot \mathrm{COEt}$

$\mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}_{2} \mathrm{H}-p$

$\mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}-p$
$\mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NHAc}-p$
$\mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}-p$

$\mathrm{NPh} \cdot \mathrm{COMe}$

10201020193.01920
15. 1.2102020201010

5 2-Phthalimidoethoxy

TABLE 2．（Continued．）																		
			Yield （\％）	M．p．	Recryst．from Formula		Found（\％）			Required（\％）								
\％	R	Derivative					C			S	C			S				
2	4－Phthalimidobut－I－enyl	Base ${ }^{\circ}$		101－103	Aq．EtOH	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}$	71.55	$6 \cdot 1$	$8 \cdot 5$		71.45	5.95	$8 \cdot 3$					
5	$\mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{NH}{ }^{\text {r }}$	Base	72	160－162	EtOH	$\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~N}$	66.25	$8 \cdot 15$	$13 \cdot 4$		$66 \cdot 6$	$8 \cdot 3$	$13 \cdot 5$					
5	$\mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{CO} \cdot \mathrm{NH}^{\text {r }}$	Base	79	150－152	2－Ethoxyethanol	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~N}_{2}$	$65 \cdot 2$	$7 \cdot 8$	$12 \cdot 6$		$65 \cdot 1$	$7 \cdot 7$	$12 \cdot 7$					
5	$p-\mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO} \cdot \mathrm{NH}{ }^{\text {r }}$	Base	53	176－178	Xylene	$\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{~N}_{4}$	$69 \cdot 7$	$7 \cdot 4$	$10 \cdot 4$		$69 \cdot 5$	$7 \cdot 3$	$10 \cdot 8$					
5	$\mathrm{NH} \cdot \mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CO} \cdot \mathrm{NH}{ }^{\text {r }}$	Base	94	$\begin{gathered} 133-135 \text { and } \\ 140-141 \end{gathered}$	EtOH	$\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{~N}_{4}$	$66 \cdot 75$	$8 \cdot 0$	$11 \cdot 4$		$66 \cdot 9$	$8 \cdot 3$	$11 \cdot 6$					
		$\mathrm{Me} \cdot \mathrm{SO}_{3} \mathrm{H}$		227－230	EtOH	$\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{~N}$			$8 \cdot 2$	$9 \cdot 6$			$8 \cdot 3$	$9 \cdot 45$				
	$\mathrm{NH} \cdot \mathrm{SO}_{2} \mathrm{Ph}$	Base	79	121－122	EtOH	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N}_{2}$			$7 \cdot 4$	$8 \cdot 9$			$7 \cdot 45$	$8 \cdot 5$				
	$\mathrm{NH} \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}$	Base	67	168－169	EtOH	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}$			$7 \cdot 5$	$9 \cdot 0$			$7 \cdot 6$	$8 \cdot 75$				
	$\mathrm{NH} \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NHAc}-p$	Base	79	117－119	Aq． MeOH	$\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~N}_{3}$			10.3				10．7					
		$\mathrm{H}_{2} \mathrm{SO}_{4}$		198－201		$2 \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4}$			$9 \cdot 25$	$11 \cdot 3$			$9 \cdot 5$	10.95				
	$\mathrm{NH} \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}-p$	Base $2 \mathrm{Me} \cdot \mathrm{SO}_{3} \mathrm{H}$	64^{9}	$125-128$ $235-237$	Aq．EtOH	$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}$			$11 \cdot 6$	$9 \cdot 1$			$12 \cdot 0$	$9 \cdot 2$				
		$2 \mathrm{Me} \cdot \mathrm{SO}_{3} \mathrm{H}$		235－237		$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}$			$7 \cdot 7$	$18 \cdot 15$			7.75	$17 \cdot 8$				
	$\mathrm{NPh} \cdot \mathrm{SO}_{2} \mathrm{Me}$	Base	81	67－68	MeOH	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2}$			$7 \cdot 9$	$9 \cdot 1$			$8 \cdot 0$	$9 \cdot 2$				
	$\mathrm{NMe} \cdot \mathrm{SO}_{2} \mathrm{Me}$	Base	81	$76-77$	$\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}_{2}$			$9 \cdot 6$	$11 \cdot 3$			$9 \cdot 8$	$11 \cdot 1$				
	Tetrahydro－1，1－dioxo－1，2－thi－ azin－2－yl	Base	60	73	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2}$	$57 \cdot 5$	$7 \cdot 5$	$8 \cdot 8$		$57 \cdot 7$	$7 \cdot 9$	$9 \cdot 0$					
	$\begin{aligned} & \text { 1,1-Dioxonaphtho }[1,8 \mathrm{a}, 8-c d] \text { - } \\ & \text { isothiazol-2-yl } \end{aligned}$	Base	92	106－107	EtOH	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}$			7•3	$8 \cdot 35$			$7 \cdot 3$	$8 \cdot 4$				
hydrolysis of the corresponding methyl ester．${ }^{i}$ With decomp．${ }^{j}$ Overall from 1 －anilino－ $5-p$－nitrophenoxypentane．B．p．215－ 220 benzyloxybenzamido）－5－p－nitrophenoxypentane．l By use of sodium sulphide．m From the preceding amine，or directly from $1-p-n i t r o p$																		
	Found： $\mathrm{H}_{2} \mathrm{O}, 4 \cdot 2$ ．Required	$\mathrm{H}_{2} \mathrm{O}, 4 \cdot 9 \%$ ．	g Fro	m the precedin	g acetyl derivative	by hydroly	ueous	dium	hydro	xide a	100° ．	＋Bis－	compou					

Table 3．Miscellaneous compounds， $\mathrm{R} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{R}^{\prime}$ ．

$\mathrm{CHCl}_{3}-\mathrm{EtOH}$

市

4

preparation of this imide (XVIa) was attempted directly from 5 - p-nitrophenoxypentyl bromide and glutarimide (XIV), the product was either the ethyl ester (XVa; $\mathrm{R}^{\prime}=\mathrm{Et}$) (when sodium ethoxide in ethanol was used for the condensation) or the 5 - p-nitrophenoxypentyl ester (XVIIa) (when sodium hydroxide in aqueous ethanol was used).

Direct reaction of the amine ($\mathrm{V} ; n=5$) with p-acetamidobenzoic acid to give the amide (VII; $n=5, \mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NHAc}$) was effected by using toluene- p-sulphonyl chloride in pyridine ${ }^{7}$ or tetraethyl pyrophosphite in diethyl phosphite. ${ }^{8}$ The latter method proved useful also in the synthesis of the pantothenamide (XIXc), providing the amide

(a) $\mathrm{R}=\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{O} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}-\mathrm{p}$
(c) $\mathrm{R}=\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{O} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}-\mathrm{p}$

(XXII)
(b) $\mathrm{R}=\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{O} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NHAC}-\mathrm{p}$
(XVIIIa) from the starting nitro-amine ($\mathrm{V} ; n=5$) and benzyloxycarbonyl- β-alanine in high yield. Removal of the protecting group with hydrogen bromide-acetic acid ${ }^{9}$ and treatment of the β-alanylamide (XXa) with DL-pantolactone gave the nitro-pantothenamide (XIXa), which was reduced catalytically to the non-crystalline base (XIXc).

Attempts to reduce only the nitro-group of the cyanoacetamide (VII; $n=5 ; \mathrm{R}=$ $\mathrm{CH}_{2} \cdot \mathrm{CN}$) failed, but the amine (VIII; $n=5 ; \mathrm{R}=\mathrm{CH}_{2} \cdot \mathrm{CN}$) was formed in high yield by preferential reaction of ethyl cyanoacetate with the aliphatic amino-group of 1 -amino5 - p-aminophenoxypentane (VI; $n=5$). Other reactive esters such as methyl dichloroacetate and trichloroacetate behaved similarly. Special methods employed for individual compounds included the reaction of the nitro-amine ($\mathrm{V} ; n=5$) with 2-phenyloxazolone to form the hippuramide (VII; $n=5 ; \mathrm{R}=\mathrm{CH}_{2} \cdot \mathrm{NH} \cdot \mathrm{COPh}$), and successively with methyl salicylate and with ethyl chloroformate to give first the salicylylamide (XXIa) and then the 3,4 -dihydro- 2,4 -dioxo- 5,6 -benz-1,3-oxazine (XXIIa). Catalytic reduction then gave the required amines (XXIc) and (XXIIc).

Since both the 5 -phenylpentyl ether ${ }^{1}$ and the 5 -phthalimidopentyl ether of p-aminophenol were active schistosomicides, the preparation of the 5 -phenyl- 5 -phthalimidopentyl ether (XXVIb) was undertaken. 4 -Benzoylbutyl bromide ${ }^{10}$ was converted into the p-nitrophenyl ether (XXIIIa) which was reduced by the Meerwein-Ponndorf method to

[^1]the alcohol (XXIVa). The bromide (XXVa), formed by means of phosphorus tribromide, was treated with potassium phthalimide, yielding the nitro-imide (XXVIa) which was reduced catalytically to the base (XXVIb). Treating the phthalimide (XXVIa) with hydrazine gave the free nitro-amine which was successively benzoylated and reduced to the analogous 5 -benzamido- 5 -phenyl ether (XXVIIb).

Condensation of p - N-methylacetamidophenol with 5 -phthalimidopentyl bromide and subsequent hydrolysis of the acetyl group led to the N-methyl derivative of the aminoimide (IV; $n=5$). This compound was remarkable for its scarlet colour in the solid

state, although its dilute solutions were colourless. The corresponding $N N$-dimethyl derivative was only pale yellow. The colour of the primary amines of this series had already been noted by Belotsvetov, ${ }^{11}$ who recorded the orange-yellow colour of both $1-p$-amino-phenoxy- and 1-p-dimethylaminophenoxy-3-phthalimidopropane. N-Acetyl-1- p-methyl-aminophenoxy-5-phthalimidopentane with hydrazine gave the 5 -amino-derivative which was benzoylated and hydrolysed to 5 -benzamido-1- p-methylaminophenoxypentane: use of the N-formyl compound was less satisfactory. An attempt to prepare this amine by partial benzoylation of 5 -amino-1- p-methylaminophenoxypentane was unsuccessful, giving a mixture of dibenzoyl derivative and unchanged amine.

Several miscellaneous secondary and tertiary amines of a similar type are described in the Experimental section.

Experimental

Light petroleum refers, unless otherwise stated, to the fraction of b. p. $40-60^{\circ}$.

Nitro- and acylamido-compounds.

1-p-Nitrophenoxy-2-phthalimidoethane was prepared (22\%) from potassium p-nitrophenoxide and 2-phthalimidoethyl bromide by the method already described. ${ }^{1}$ After crystallisation from acetic acid, it had m. p. $152-154^{\circ}$ (Found: N, 9.2. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires $\mathrm{N}, 9 \cdot 0 \%$). Similarly prepared in either ethanol or 2 -ethoxyethanol were: 1-p-nitrophenoxy-3-phthalimidopropane (44%), m. p. 189-191.5 (from dioxan) (Found: N, 8.75. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires $\mathrm{N}, 8.6 \%$); 1-p-nitrophenoxy-4-phthalimidobutane (64%), m. p. 119° (from acetic acid) (Found: C, 63.8; $\mathrm{H}, 4.7$; $\mathrm{N}, 8.5 . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires $\mathrm{C}, 63.5 ; \mathrm{H}, 4.7$; $\mathrm{N}, 8.2 \%$); 1-p-nitrophenoxy-10phthalimidodecane (60%), m. p. 102-103 (from acetic acid) (Found: C, $67.8 ;$ H, $7 \cdot 0$; N, 6.6. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires C, $67.8 ; \mathrm{H}, 6.6 ; \mathrm{N}, 6.6 \%$); and 1-p-nitrophenoxy-6-phthalimidohex-3ene (55%) (from 6-phthalimido-1-toluene- p-sulphonyloxyhex-3-ene; B. P. 769,706), m. p. 118-119 (from aqueous acetic acid) (Found: C, 65•7; H, 5.2; N, 7.5. $\quad \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires C, $65 \cdot 6 ; \mathrm{H}, 4.9$; $\mathrm{N}, 7.65 \%$).

1-Amino-5-p-nitrophenoxypentane.-1-p-Nitrophenoxy-5-phthalimidopentane was treated with aqueous hydrazine in ethanol as already described, ${ }^{1}$ but the amine was more conveniently liberated by shaking the resulting complex with chloroform and warm 2 N -sodium hydroxide. The amine had b. p. $160-165^{\circ} / 0.02 \mathrm{~mm}$. (partial decomp.) (Found: $\mathrm{N}, 12.9 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires $\mathrm{N}, 12 \cdot 5 \%$). Similarly prepared were: 1-amino-5-p-aminophenoxypentane (94%), m. p. $67-69^{\circ}$ [from light petroleum (b. p. 100-120 $)$] (Found: N, 14.l. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ON}_{2}$ requires N , $14 \cdot 4 \%$) [dimethanesulphonate, m. p. 244-246 ${ }^{\circ}$ (from ethanol) (Found: N, 7.4; S, 16.8. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ON}_{2}, 2 \mathrm{CH}_{4} \mathrm{O}_{3} \mathrm{~S}$ requires $\left.\left.\mathrm{N}, 7 \cdot 25 ; \mathrm{S}, 16 \cdot 6 \%\right)\right]$; and 1-p-acetamidophenoxy-5-aminopentane (91%), m. p. $137-139^{\circ}$ (from benzene) (Found: C, $65 \cdot 7 ; \mathrm{H}, 8 \cdot 45 ; \mathrm{N}, 11 \cdot 9 . \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 66.1 ; \mathrm{H}, 8.5 ; \mathrm{N}, 11 \cdot 85 \%$) [methanesulphonate, m. p. $155-157^{\circ}$ (from ethanol) (Found: $\mathrm{N}, 8 \cdot 4 . \quad \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}_{2}, \mathrm{CH}_{4} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{N}, 8 \cdot 4 \%$)].
${ }_{11}$ Belotsvetov, J. Gen. Chem. U.S.S.R., 1944, 14, 226.

1-p-Nitrophenoxy-5-tetrachlorophthalimidopentane.-A mixture of 5-amino-1-p-nitrophenoxypentane (22.4 g .) and tetrachlorophthalic anhydride (28.6 g .) was heated at $180-190^{\circ}$ for 2 hr ., cooled somewhat, and dissolved in hot 2-ethoxyethanol (150 ml .). The cooled solution deposited the tetrachlorophthalimide (96\%), m. p. 165-167 ${ }^{\circ}$ (Found: N, 5.7; $\mathrm{Cl}, 28 \cdot 5 . \quad \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Cl}_{4}$ requires $\mathrm{N}, 5.7 ; \mathrm{Cl}, 28.8 \%$). Similarly prepared were: 1 -p-nitrophenoxy-5-3'-nitrophthalimidopentane (84\%), m. p. 163-164.5 (from 2-ethoxyethanol) (Found: N, 10.45. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{N}, 10 \cdot 5 \%$); 1-p-acetamidophenoxy-5-3'-nitrophthalimidopentane (67%), m. p. 132-134 ${ }^{\circ}$ (from ethanol) (Found: N, 10.2. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires $\mathrm{N}, 10 \cdot 3 \%$); and 1-homophthalimido-5-pnitrophenoxypentane (65%), m. p. $144-145^{\circ}$ (from acetone) (Found: C, $65 \cdot 2 ;$ H, $5 \cdot 6 ;$ N, 7.5 . $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires $\mathrm{C}, 65 \cdot 2 ; \mathrm{H}, 5 \cdot 4 ; \mathrm{N}, 7 \cdot 6 \%$).

1-(5-p-Nitrophenoxypentyl)barbituric Acid.-A mixture of $1-p$-nitrophenoxy-5-ureidopentane ${ }^{1}$ (61 g .), malonic acid (24 g .), and acetic acid (55 ml .) was heated to $70-80^{\circ}$ and treated dropwise with acetic anhydride (45 ml .). After a further 8 hr . at 90°, the mixture was cooled, diluted with water (84 ml .), and filtered from some solid [m. p. 178.5-180 (from acetone), which was possibly an acetyl derivative (Found: C, $54 \cdot 0 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 11 \cdot 1$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{7} \mathrm{~N}_{3}$: C, $54 \cdot 1$; H, $5 \cdot 0 ; \mathrm{N}, 11 \cdot 1 \%$)]. Further dilution with water (240 ml .) gave the substituted barbituric acid, m. p. 149-151 (from ethanol) (Found: C, $53 \cdot 85 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 12 \cdot 5 . \quad \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires C, 53.7 ; H, $5 \cdot 1$; N, 12.5%).

1-p-Nitrophenoxy-5-salicylylamidopentane.-A mixture of 5-amino-1-p-nitrophenoxypentane (45 g .) and methyl salicylate (15.2 g .) was heated at 120° for 5 hr ., cooled, and dissolved in chloroform. The solution was washed with 2 N -hydrochloric acid and water, dried, and evaporated. The residue was crystallised from benzene, yielding the amide (73%), m. p. $123-125^{\circ}$ (Found: $\mathrm{N}, 8 \cdot 2 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires $\mathrm{N}, 8 \cdot 15 \%$).

3,4-Dihydro-3-(5-p-nitrophenoxypentyl)-2,4-dioxo-5,6-benz-1,2-oxazine.-Ethyl chloroformate (12 g .) was slowly added to a cooled solution of the foregoing nitro-compound (35 g .) in dry pyridine (120 ml .). The mixture was heated at 100° for 2 hr ., cooled, and diluted with water, and the product was crystallised from acetic acid and from ethanol, giving the benzoxazinedione (86%), m. p. $145-146^{\circ}$ (Found: C, $61 \cdot 8 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 7 \cdot 5 . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~N}_{2}$ requires C, $61 \cdot 6 ; \mathrm{H}, 4 \cdot 9$; N, 7.6\%).

1-Camphorimido-5-p-nitrophenoxypentane.-A mixture of 5 - p-nitrophenoxypentyl bromide (16.15 g .), (\pm)-camphorimide ($10 \cdot 15 \mathrm{~g}$.), $10 \cdot 4 \mathrm{~N}$-potassium hydroxide ($5 \cdot 4 \mathrm{ml}$.), and 2 -ethoxyethanol (25 ml .) was refluxed for 2 hr ., cooled, and diluted with water. The solid was recrystallised from aqueous ethanol, giving the camphorimide (71%), m. p. $66-67^{\circ}$ (Found: $\mathrm{C}, 64 \cdot 9 ; \mathrm{H}, 7 \cdot 5 ; \mathrm{N}, 7 \cdot 4 . \quad \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires $\left.\mathrm{C}, 64 \cdot 9 ; \mathrm{H}, 7 \cdot 3 ; \mathrm{N}, 7 \cdot 2 \%\right)$. $\mathrm{N}-(5-\mathrm{p}-$ Nitrophenoxypentyl)phthalhydrazide (23%), m. p. $160-162^{\circ}$ (from toluene) (Found: C, 61.95 ; H, 5.35; N, 11.7. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~N}_{5}$ requires $\mathrm{C}, 61 \cdot 8 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 11 \cdot 4 \%$), was similarly made (in dimethylformamide).

1 - β-Carboxyacrylamido-5-p-nitrophenoxypentane.-A solution of 1 -amino- 5 - p-nitrophenoxypentane (22.4 g .) in chloroform (100 ml .) was slowly added to a suspension of maleic anhydride (9.8 g .) in chloroform (100 ml .). When the exothermic reaction was over, the solution was refluxed for 1 hr ., cooled, washed with 2 N -hydrochloric acid and water, dried, and evaporated. Crystallisation of the residue from ethanol gave the maleamic acid (53%), m. p. $91-93^{\circ}$ (Found: C, $55.6 ; \mathrm{H}, 5 \cdot 8 ; \mathrm{N}, 8.3 . \quad \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~N}_{2}$ requires C, $55.9 ; \mathrm{H}, 5 \cdot 6 ; \mathrm{N}, 8.7 \%$). Similarly prepared were: 1-p-acetamidophenoxy-5- β-carboxyacrylamidopentane (63%), m. p. 161-163 (from aqueous acetic acid) (Found: C, $60.4 ; \mathrm{H}, 6.8 ; \mathrm{N}, 8.7 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires $\mathrm{C}, 61 \cdot 1 ; \mathrm{H}, 6.6$; $\mathrm{N}, 8.4 \%$); 1-(β-carboxymethyl- β-methylvaleramido)- $5-p$-nitrophenoxypentane (not obtained crystalline); and $1-\gamma$-carboxybutyramido-5-p-nitrophenoxypentane (92%), m. p. 116- 117° (also obtained by hydrolysis of the corresponding ethyl ester as described below).

1-Maleimido-5-p-nitrophenoxypentane.-A mixture of the foregoing maleamic acid (17.2 g .), acetic anhydride (18 ml .), and freshly fused sodium acetate (1.8 g .) was stirred at 100° for 1 hr ., and excess of the anhydride was removed in vacuo. The residue was triturated with water, and the solid product crystallised from aqueous ethanol and from light petroleum (b. p. 100$120^{\circ}$), giving the maleimide (51%), m. p. $105-107^{\circ}$ (Found: C, $59 \cdot 1$; H, $5 \cdot 1 ; \mathrm{N}, 9 \cdot 2$. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires C, $59 \cdot 2 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 9 \cdot 2 \%$).

1-Glutarimido-5-p-nitrophenoxypentane.-A mixture of the glutaramic acid ($37 \cdot 3 \mathrm{~g}$.) and acetyl chloride (100 ml .) was refluxed for 20 min ., then evaporated, and the residue was crystallised from methanol, yielding the glutarimide (84%), m. p. $87-88^{\circ}$ (Found: C, 59.7; H, 6.2; $\mathrm{N}, 8.9 . \quad \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires $\mathrm{C}, 60.0 ; \mathrm{H}, 6.3 ; \mathrm{N}, 8.75 \%$). 1-(β-Ethyl- β-methylglutarimido)-$5-p$-nitrophenoxypentane was made similarly, but was not obtained crystalline.
$1-\gamma$-Ethoxycarbonylbutyramido-5-p-nitrophenoxypentane.-Glutarimide (11.3 g .) and $5-p$ nitrophenoxypentyl bromide (28.8 g .) were added to a solution of sodium (2.3 g .) in ethanol $(150 \mathrm{ml}$.$) , and the mixture was refluxed for 20 \mathrm{hr}$., cooled, diluted with water, and extracted with chloroform. The washed and dried extract was evaporated and the residue was crystallised from benzene, giving the ethyl ester (39%), m. p. $90-91.5^{\circ}$ (Found: C, $59.0 ; \mathrm{H}, 7.3 ; \mathrm{N}, 7 \cdot 3$; OEt, $12 \cdot 3 \%$; $M, 300 . \quad \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~N}_{2}$ requires C, $59 \cdot 0 ; \mathrm{H}, 7 \cdot 15 ; \mathrm{N}, 7 \cdot 6 ; \mathrm{OEt}, 12 \cdot 3 \%$; $M, 366$). Hydrolysis with 2 N -sodium hydroxide (1 equiv.) afforded the corresponding acid (93%), m. p. $118-119^{\circ}$ (Found: C, 56.9 ; H, $6 \cdot 8 ; \mathrm{N}, 8.3 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~N}_{2}$ requires C, $56.8 ; \mathrm{H}, 6 \cdot 6 ; \mathrm{N}, 8.3 \%$) not depressed by a specimen prepared as described above.

When a similar condensation was carried out by using sodium hydroxide (1 equiv.) in aqueous ethanol, the product (33%) was 5 -p-nitrophenoxypentyl glutaramate, m. p. $93-95^{\circ}$ (from benzene) (Found: C, $56.9 ; \mathrm{H}, 6.3 ; \mathrm{N}, 8.3 \%$; $M, 330 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~N}_{2}$ requires $\mathrm{C}, 56.8 ; \mathrm{H}, 6.6 ; \mathrm{N}, 8.3 \%$; $M, 338$), identical with a specimen, m. p. $93-94^{\circ}$, prepared (34%) from 5 - p-nitrophenoxypentyl bromide and silver glutaramate in dry dioxan. Its structure was confirmed by catalytic reduction to 5-p-aminophenoxypentyl glutaramate (81%), m. p. $116-118^{\circ}$ (from ethanol) (Found: $\mathrm{N}, 9 \cdot 0 . \quad \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires $\mathrm{N}, 9 \cdot 1 \%$), and subsequent hydrolysis to 5 - p-aminophenoxypentanol, m. p. $94-96^{\circ}$ (Found: $\mathrm{N}, 7 \cdot 2$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}: \mathrm{N}, 7 \cdot 2 \%$) not depressed by an authentic specimen (see Part II).

The amides (listed in Table 1) were prepared from 1-p-acetamidophenoxy-5-aminopentane, 1 -amino-4- p-nitrophenoxybutane, 1 -amino- $5-p$-nitrophenoxypentane or 1 -amino- 8 - p-nitrophenoxyoctane with the appropriate acid chloride or anhydride either in pyridine or under Schotten-Baumann conditions (in some instances the yields quoted are overall from the phthalimide). NN^{\prime}-Di-(5-p-nitrophenoxypentyl)terephthalamide (58%), m. p. $154-157^{\circ}$ (from ethanol) (Found: $\mathrm{N}, 9 \cdot 7 . \mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{~N}_{4}$ requires $\mathrm{N}, 9 \cdot 6 \%$), and NN^{\prime}-Di-(5-p-nitrophenoxypentyl)glutaramide (39%), m. p. $127-129^{\circ}$ (from acetone) (Found: $\mathrm{N}, 10 \cdot 4 . \quad \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{~N}_{4}$ requires $\mathrm{N}, 10 \cdot 3 \%$), were prepared similarly.

1-Cyanoacetamido-5-p-nitrophenoxypentane was prepared (68\%) from 1-amino-5-p-nitrophenoxypentane and ethyl cyanoacetate in boiling ethanol. After recrystallisation from aqueous ethanol, it had m. p. $85-86^{\circ}$ (Found: C, $57 \cdot 55 ; \mathrm{H}, 5 \cdot 8 ; \mathrm{N}, 14 \cdot 3 . \quad \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}_{3}$ requires C, $57.75 ; \mathrm{H}, 5.9 ; \mathrm{N}, 14.4 \%$). Similarly obtained (in the absence of a solvent) was NN^{\prime}-di-(5-p-nitrophenoxypentyl)oxamide (73%), m. p. 163.5-164.5 (from chloroform-ethanol) (Found: $\mathrm{C}, 57 \cdot 25 ; \mathrm{H}, 5 \cdot 8 ; \mathrm{N}, 11 \cdot 2 . \quad \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~N}_{4}$ requires $\mathrm{C}, 57 \cdot 4 ; \mathrm{H}, 6 \cdot 0 ; \mathrm{N}, 11 \cdot 1 \%$).

1-Ethoxalylamino-5-p-nitrophenoxypentane.-Ethoxalyl chloride (13.65 g .) was slowly added to a cooled solution of 1 -amino- $5-p$-nitrophenoxypentane (21.4 g .) in pyridine (100 ml .). The solution was kept overnight at room temperature, diluted with water and ether, and filtered from the insoluble oxamide ($2 \cdot 15 \mathrm{~g}$.). The ether solution was separated, washed with $2 \mathrm{~N}-$ hydrochloric acid and water, dried, and evaporated. The residue was repeatedly extracted with boiling light petroleum (b. p. $100-120^{\circ}$). The cooled extracts deposited the ethoxalyl derivative $\left(27^{\circ}{ }_{0}\right.$), m. p. $85-87^{\circ}$ (Found: C , $55.9 ; \mathrm{H}, 5.95 ; \mathrm{N}, 8.8 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~N}_{2}$ requires C, $55.55 ; \mathrm{H}, 6 \cdot 2 ; \mathrm{N}, 8.6 \%$).

1-Formamido-5-p-nitrophenoxypentane.-A mixture of 1-amino-5-p-nitrophenoxypentane (36.4 g .), concentrated hydrochloric acid (13.95 ml .), and formamide (64.5 ml .) was heated at 145° for 30 min ., cooled, and evaporated under reduced pressure. Water (100 ml .) was added to the residue, and the solid product was filtered off, dried, and recrystallised from benzene. The crude nitro-compound was extracted with ether (Soxhlet), and the extract was cooled and filtered, giving the formamide (78%), m. p. $71-72^{\circ}$ (Found: C, 57.25 ; H, 6.4; N, 11.3 . $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires $\left.\mathrm{C}, 57 \cdot 15 ; \mathrm{H}, 6 \cdot 35 ; \mathrm{H}, 11 \cdot 1 \%\right)$.

1-Hippuramido-5-p-nitrophenoxypentane.-2-Phenyloxazolone (8.6 g .) was added to a solution of 1 -amino- 5 - p-nitrophenoxypentane (12.0 g .) in chloroform, the solution was evaporated, and the residue was heated at 100° for 30 min . Crystallisation of the residue from ethanol gave the hippuramide (80%), m. p. $145-147^{\circ}$ (Found: $\mathrm{N}, 10 \cdot 7 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~N}_{3}$ requires $\mathrm{N}, 10 \cdot 9 \%$).

1-o-Carboxybenzamido-5-p-nitrophenoxypentane.-1-p-Nitrophenoxy-5-phthalimidopentane (17.7 g .) was refluxed with N -sodium hydroxide (50 ml .) for 15 min . The yellow solution was filtered and the filtrate was acidified with acetic acid. The acid was filtered off, washed with dilute acetic acid and water, dried, and recrystallised from chloroform-light petroleum. Its m. p., $118-122^{\circ}$, varied with the rate of heating (Found: $\mathrm{C}, 61 \cdot 4 ; \mathrm{H}, 5 \cdot 5 ; \mathrm{N}, 7 \cdot 4 . \quad \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~N}_{2}$ requires $\mathrm{C}, 61 \cdot 3 ; \mathrm{H}, 5 \cdot 4 ; \mathrm{N}, 7.5 \%$).

1-p-Acetamidobenzamido-5-p-nitrophenoxypentane.-(a) Tetraethyl pyrophosphite (2.7 ml .)
was added to a solution of 1 -amino- $5-p$-nitrophenoxypentane (2.24 g .) and p-acetamidobenzoic acid (1.79 g .) in diethyl phosphite (7 ml .), and the mixture was heated at 100° for 1 hr ., diluted with water, and cooled. Recrystallisation of the product from 2-ethoxyethanol gave the amide (55%), m. p. $187-188^{\circ}$ (Found: N, $10.95 . \quad \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~N}_{3}$ requires $\mathrm{N}, 10.9 \%$).
(b) 1-Amino-5-p-nitrophenoxypentane (11.2 g .) was added to a solution of p-acetamidobenzoic acid (17.9 g .) and toluene-p-sulphonyl chloride (9.52 g .) in pyridine (40 ml .). After 30 min . at room temperature, the mixture was treated with a solution of sodium hydroxide (10 g .) and sodium metabisulphite (5 g .) in water (200 ml .), and the precipitate was filtered off, washed, dried, and recrystallised. The amide (60%) had m. p. 185-186 ${ }^{\circ}$.

1-Dibenzoylamino-5-p-nitrophenoxypentane.-A solution of 1-amino-5-p-nitrophenoxypentane (2.54 g .) in pyridine (10 ml .) was refluxed with benzoyl chloride (5 ml .) for 1.5 hr ., cooled, and diluted with water. After recrystallisation from ethanol, the dibenzoyl derivative (83%) had m. p. 119-120 (Found: N, 6.8. $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires $\mathrm{N}, 6.5 \%$).

1-(N-Benzyloxycarbonyl- β-alanyl)amino-5-p-nitrophenoxypentane.-A solution of benzyloxy-carbonyl- β-alanine ${ }^{12}$ (24 g .) and 1 -amino- 5 - p-nitrophenoxypentane (24 g .) in diethyl phosphite (75 ml .) was heated with tetraethyl pyrophosphite (30 ml .) at 100° for 30 min ., diluted with water, cooled, and filtered. The product was recrystallised from aqueous ethanol; the benzyloxycarbonyl compound (90%) had m. p. $137-138^{\circ}$ (Found: N, 9.65. $\quad \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires $\mathrm{N}, 9 \cdot 8 \%$).

1- β-Alanylamino-5-p-nitrophenoxypentane.-33\% Hydrogen bromide-acetic acid (60 ml .) was added to the foregoing benzyloxycarbonyl derivative (35.05 g .) in a flask fitted with a guard tube $\left(\mathrm{CaCl}_{2}\right)$. Evolution of carbon dioxide began at once. After 20 min . the clear solution was treated with dry ether, and the hydroscopic hydrobromide was filtered off, washed with dry ether, and dissolved in water. The solution was basified and extracted with chloroform, the washed and dried extract was evaporated, and the residue was triturated with ether. The solid product (m. p. $85-92^{\circ}$) proved difficult to purify and was used directly for the next stage. A small amount was recrystallised from benzene, giving the β-alanyl compound, m. p. 93-95 (Found: C, $57 \cdot 6 ; \mathrm{H}, 7 \cdot 2 ; \mathrm{N}, 13 \cdot 6 . \quad \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}_{3}$ requires $\mathrm{C}, 56 \cdot 9 ; \mathrm{H}, 7 \cdot 2 ; \mathrm{N}, 14 \cdot 2 \%$).

1-p-Nitrophenoxy-5-dL-pantothenamidopentane.-A solution of the foregoing amine (10.36 g .) and DL-pantolactone ${ }^{13}(4.56 \mathrm{~g}$.) in absolute ethanol (50 ml .) was refluxed for 20 hr ., then evaporated. The residue, in ethyl acetate, was washed with 2 N -sodium hydroxide, 2 N -hydrochloric acid, and water, dried, and evaporated, and the residual oily product ($14 \cdot 6 \mathrm{~g}$.) (Found: $\mathrm{N}, 9 \cdot 2$. $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{N}, 9 \cdot 9 \%$) was reduced directly to the amine.

1-Cyclohexylamino-5-p-nitrophenoxypentane.-A solution of 5 -p-nitrophenoxypentyl bromide (43.2 g .) and cyclohexylamine (19.8 g .) in ethanol (50 ml .) was refluxed for 19 hr ., cooled, and filtered. The amine hydrobromide (76%), after recrystallisation from ethanol, had m. p. 221$223^{\circ}$ (Found: C, $53 \cdot 1$; H, $7 \cdot 2$; N, 7.35. $\quad \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}_{2}, \mathrm{HBr}$ requires $\mathrm{C}, 52 \cdot 7 ; \mathrm{H}, 7 \cdot 0 ; \mathrm{N}, 7 \cdot 2 \%$). The benzoyl derivative had m. p. $78-79^{\circ}$ (from aqueous ethanol) (Found: N, $7 \cdot 0 . \quad \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires $\mathrm{N}, 6 \cdot 8 \%$).

1-N-Benzyloxybenzamido-5-p-nitrophenoxypentane.-5-p-Nitrophenoxypentyl bromide (44.5 g.) and N-benzyloxybenzamide ${ }^{14}$ (35 g .) were added to a solution from sodium (3.5 g .) and dry ethanol (300 ml.), and the mixture was refluxed for 24 hr ., filtered from sodium bromide, and concentrated. The residue was dissolved in chloroform, and the solution was washed with 2 N -sodium hydroxide and water, dried, concentrated, and diluted with ether, giving the nitroether (46%), m. p. $77-78^{\circ}$ (Found: C, $69 \cdot 1$; $\mathrm{H}, 6 \cdot 1$; $\mathrm{N}, 6 \cdot 4 . \quad \mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires C , $69 \cdot 1$; H, $6.0 ; \mathrm{N}, 6.45 \%$).

1-Anilino-5-p-nitrophenoxypentane.-A mixture of $5-p$-nitrophenoxypentyl bromide ($57 \cdot 6 \mathrm{~g}$.), aniline (50 ml .), and ethanol (200 ml .) was refluxed for 20 hr ., concentrated, and diluted with water. Crystallisation of the product from ethanol gave the anilino-derivative (98%), m. p. $87-89^{\circ}$ (Found: C, 67.7 ; H, 6.4 ; N, $9.1 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires C, $68.0 ; \mathrm{H}, 6.7$; $\mathrm{N}, 9.3 \%$). The acetyl derivative was not obtained crystalline and was reduced directly to the amine (see Table 2). The methanesulphonyl derivative (64%) had m. p. $73-74^{\circ}$ [from benzene-light petroleum (b. p. $80-100^{\circ}$)] (Found: N, $7 \cdot 0 ; \mathrm{S}, 8 \cdot 3 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{N}, 7 \cdot 4 ; \mathrm{S}, 8 \cdot 5 \%$).

1-N-Methylmethanesulphonamido-5-p-nitrophenoxypentane.-1 -Methanesulphonamido-5-pnitrophenoxypentane (42.7 g .), water (5 ml .), and methyl iodide (17.4 ml .) were added successively to a solution from sodium (3.5 g .) and ethanol (300 ml .). The mixture was refluxed for 3 hr .,

[^2]concentrated, and diluted with water, and the solid product was crystallised from ether, giving the N -methylmethanesulphonamide (78%), m. p. $61-63^{\circ}$ (Found: $\mathrm{N}, 8 \cdot 6 ; \mathrm{S}, 9.9 . \quad \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{N}, 8.9 ; \mathrm{S}, 10.1 \%)$.

N -Benzoyldi-(4-p-nitrophenoxypentyl)amine.-A solution of 5-p-nitrophenoxypentyl bromide (28.8 g .) and 1-amino-5-p-nitrophenoxypentane (22.4 g .) in ethanol (250 ml .) was refluxed for 20 hr ., cooled, and filtered. The crude hydrobromide (68%) was shaken with benzoyl chloride in acetone- 2 N -sodium hydroxide, and the product was crystallised from acetone-ether, giving the benzoyl derivative (66%), m. p. $114-115.5^{\circ}$ (Found: $\mathrm{C}, 65 \cdot 1 ; \mathrm{H}, 6 \cdot 3 ; \mathrm{N}, 7 \cdot 8 . \quad \mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{C}, 65 \cdot 05 ; \mathrm{H}, 6 \cdot 2 ; \mathrm{N}, 7 \cdot 8 \%$).

1-Benzoyl-4-p-nitrophenoxybutane was obtained (89%) by condensation of potassium p nitrophenoxide with 4-benzoylbutyl bromide ${ }^{10}$ in 2-ethoxyethanol; after crystallisation from acetic acid, it had m. p. $122-123^{\circ}$ (Found: $\mathrm{C}, 68 \cdot 3 ; \mathrm{H}, 6.0 ; \mathrm{N}, 4.7 . \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}$ requires C, $68 \cdot 2 ; \mathrm{H}, 5 \cdot 7$; N, $4 \cdot 7 \%$).

1-Hydroxy-5-p-nitrophenoxy-1-phenylpentane.-A solution of the foregoing nitro-ketone (63 g .) and aluminium isopropoxide ($25 \cdot 2 \mathrm{~g}$.) in propan- 2 -ol (3 l .) was slowly distilled until no more acetone was obtained (2 hr .). The solution was evaporated, the residue was treated with dilute hydrochloric acid, and the solid was recrystallised from aqueous ethanol, giving the hydroxy-compound (94%), m. p. $61-62^{\circ}$ (Found: C, $67 \cdot 7 ; \mathrm{H}, 6 \cdot 2 ; \mathrm{N}, 4 \cdot 75 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}$ requires $\mathrm{C}, 67.8 ; \mathrm{H}, 6.3 ; \mathrm{N}, 4.65 \%)$.

5-p-Nitrophenoxy-1-phenyl-1-phthalimidopentane.-Phosphorus tribromide (21.6 ml .) was slowly added to a solution of the foregoing hydroxy-compound (54 g .) in benzene (500 ml .), stirred and cooled to 10°; the mixture was then kept overnight at room temperature and treated with water, the benzene layer was separated, and the aqueous layer was extracted with ether. The combined benzene and ether solutions were washed, dried, and evaporated. A mixture of the residual bromo-compound, potassium phthalimide (54 g.), and dry acetone (250 ml .) was stirred and refluxed for 48 hr . The product (34 g .) was isolated in the usual way. Unchanged bromide recovered from the mother-liquors was re-treated with potassium phthalimide in acetone, giving more of the required product (total $51 \mathrm{~g} ., 66 \%$). After recrystallisation from ethanol, the phthalimido-derivative had m. p. 131-132 (Found: C, $69 \cdot 8 ; \mathrm{H}, 4 \cdot 7 ; \mathrm{N}, 6 \cdot 6 . \quad \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires $\mathrm{C}, 69 \cdot 8 ; \mathrm{H}, 5 \cdot 1$; $\mathrm{N}, 6.5 \%$). Hydrolysis with hydrazine and subsequent benzoylation afforded 1-benzamido-5-p-nitrophenoxy-1-phenylpentane (69% overall), m. p. 116-118 ${ }^{\circ}$ (from benzene) (Found: C, $71 \cdot 6 ; \mathrm{H}, 5 \cdot 9 . \quad \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires $\mathrm{C}, 71 \cdot 8 ; \mathrm{H}, 5 \cdot 9 \%$).

1-p-Nitrophenoxy-5-2'-phthalimidoethoxypentane.-1-2'-Hydroxyethoxy-5-p-nitrophenoxypentane ${ }^{15}$ was converted by toluene- p-sulphonyl chloride in pyridine into the toluene-psulphonyl derivative (81%), m. p. $49-50^{\circ}$ (Found: $\mathrm{C}, 56.95 ; \mathrm{H}, 5 \cdot 8 ; \mathrm{N}, 3.4 . \quad \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{NS}$ requires $\mathrm{C}, 56.7 ; \mathrm{H}, 5.9 ; \mathrm{N}, 3.3 \%$), which was condensed with potassium phthalimide in the usual way, giving the phthalimido-derivative (65%), m. p. $78-79^{\circ}$ (from methanol) (Found: C, $63.5 ; \mathrm{H}, 5.9 ; \mathrm{N}, 6.9 . \quad \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~N}_{2}$ requires $\mathrm{C}, 63 \cdot 3 ; \mathrm{H}, 5.5 ; \mathrm{N}, 7.0 \%$).

1-(1,2-Dihydro-2-oxo-pyrid-1-yl)-5-p-nitrophenoxypentane.-A mixture of 5 -p-nitrophenoxypentyl iodide (Part II) (102 g .), the sodium derivative (36 g .) of 2 -pyridone, ethanol (400 ml .), and water (200 ml .) was refluxed for 24 hr ., ethanol was distilled off, and the residue was diluted with water. The solid product was recrystallised from acetone, giving the nitro-ether (47\%), m. p. 103° (Found: C, 63.7; H, 6.2; N, $9 \cdot 1 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires C, $63.6 ; \mathrm{H}, 6.0 ; \mathrm{N}, 9.3 \%$). From the mother-liquors a small amount of $1-p$-nitrophenoxy- 5 -pyrid- 2^{\prime}-yloxypentane (Part II) was obtained.

1-(2,3-Dihydro-3-oxobenzisothiazol-2-yl)-5-p-nitrophenoxypentane.-A mixture of 5 -p-nitrophenoxypentyl bromide (2.88 g .), the sodium derivative (1.73 g .) of 2,3 -dihydro- 3 -oxobenzisothiazole, ${ }^{16}$ and 2 -ethoxyethanol (10 ml .) was refluxed for 20 hr ., cooled, and diluted with water. The solid product was dissolved in chloroform, the solution was washed with dilute sodium hydroxide and water, dried, and evaporated, and the residue was triturated with ether. Recrystallisation of the solid from ethanol yielded the nitro-ether (39%), m. p. $109-111^{\circ}$ (Found: $\mathrm{N}, 7 \cdot 5 ; \mathrm{S}, 9 \cdot 0 . \quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{N}, 7 \cdot 8 ; \mathrm{S}, 8 \cdot 9 \%$). Oxidation with 30% hydrogen peroxide in acetic acid at 100° gave the known saccharin derivative, ${ }^{1} \mathrm{~m}$. p. and mixed m. p. 126$127^{\circ}$.

1-p-Acetamidophenoxy-5-(2,3-dihydro-3-oxobenzisothiazol-2-yl)pentane (42\%), m. p. 170-171 ${ }^{\circ}$ (from ethanol) (Found: C, 61.7; H, 6.6; N, 7.05; S, 8.4. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}$ requires C, 62.1;

[^3]H, $5 \cdot 7$; $\mathrm{N}, 7.25$; S, 8.3%) was similarly prepared. When 5 -p-nitrophenoxypentyl bromide (3.15 g .) was condensed with 2,3 -dihydro-3-oxobenzisothiazole (1.65 g .) by using potassium carbonate (0.76 g .) in acetone (50 ml .), the product (1.9 g .) had m. p. $97-99^{\circ}$ (from acetic acid) (Found: C, 59.7 ; H, $5 \cdot 0 ; \mathrm{N}, 7.5 ; \mathrm{S}, 9.0 \% ; M, 350 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 60.3 ; \mathrm{H}, 5 \cdot 1$; $\mathrm{N}, 7 \cdot 8 ; \mathrm{S}, 8.9 \% ; M, 358$), depressed to below 90° by the foregoing nitro-compound, and was probably 1-p-nitrophenoxy-5-benzisothiazol-3'-yloxypentane.

3-(5-p-Nitrophenoxypentyl)rhodanine.-Carbon disulphide (8.4 ml .) and dimethylformamide (60 ml .) were added successively to a solution of 5 -amino-1-p-nitrophenoxypentane (32 g .) in dry toluene (100 ml .). After 30 min . the solution was cooled, treated with mercuric oxide (32 g .), and shaken for 30 min ., then filtered from black mercuric sulphide, and the filtrate was treated with 90% mercaptoacetic acid ($7 \cdot 3 \mathrm{~g}$.). The solution was heated at 100° for 30 min ., concentrated, and diluted with water, and the solid product was recrystallised from ethanol, giving the rhodanine (68%), m. p. 112- 113° (Found: $\mathrm{C}, 49 \cdot 6 ; \mathrm{H}, 5 \cdot 1$; $\mathrm{S}, 18 \cdot 8 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 49 \cdot 4 ; \mathrm{H}, 4 \cdot 7 ; \mathrm{S}, 18 \cdot 8 \%$). The 5 -benzylidene-derivative, prepared (96%) by heating the rhodanine (30 g .) with benzaldehyde (20 ml .), acetic acid (200 ml .), and concentrated sulphuric acid (40 ml .) at 100° for 3 hr ., crystallised from acetic acid and had m. p. $143-144^{\circ}$ (Found: $\mathrm{N}, 6.4 ; \mathrm{S}, 14.9 . \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}$ requires $\mathrm{N}, 6.5$; $\mathrm{S}, 14.95 \%$).

3-(5-p-Nitrophenoxypentyl)thiazolidine-2,4-dione.-Thiazolidine-2,4-dione ($14 \cdot 1 \mathrm{~g}$.) and 5 -pnitrophenoxypentyl iodide (49.7 g .) were added successively to a solution from sodium (3.43 g .) and dry ethanol (200 ml .), and the mixture was refluxed for 20 hr ., cooled, and filtered. The solid was washed with cold ethanol and water, and recrystallised from ethanol, giving the thiazolidine-2,4-dione (46%), m. p. $118-119^{\circ}$ (Found $\mathrm{N}, 8.55 ; \mathrm{S}, 9.7 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}$ requires N, $8 \cdot 6 ; \mathrm{S}, 9 \cdot 8 \%$).

N -(5-p-Nitrophenoxypentyl)butane-1,4-sultam-Butane-1,4-sultam ${ }^{17}$ (2 g .) was dissolved in a solution from sodium (0.35 g .) and dry ethanol (10 ml .), and a solution from 5 - p-nitrophenoxypentyl bromide ($4 \cdot 3 \mathrm{~g}$.) in dry ethanol (10 ml .) was added. The mixture was refluxed for 3 hr ., concentrated, diluted with water, and filtered. Recrystallisation of the solid from methanol yielded the sultam (79\%), m. p. $89-90^{\circ}$ (Found: C, $53.0 ; \mathrm{H}, 6.5 ; \mathrm{N}, 8 \cdot 2 ; \mathrm{S}, 9 \cdot 0 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 52.6 ; \mathrm{H}, 6.4 ; \mathrm{N}, 8.2 ; \mathrm{S}, 9.35 \%)$. N -(5-p-Nitrophenoxypentyl)naphthalene-1,8-sultam (59%), m. p. 119° (from ethanol) (Found: N, 6.9; S, 8.0. $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{N}, 6 \cdot 8$; $\mathrm{S}, 7 \cdot 8 \%$), was similarly prepared from naphthalene-1,8-sultam. ${ }^{18}$

Primary amines.

1-p-Aminophenoxy-7-hexahydrophthalimidoheptane. -When 1-p-nitrophenoxy-7-phthalimidoheptane (43.8 g .) was reduced in ethanol (350 ml .) over 2% platinum dioxide at 70° and 56 lb . per sq. inch hydrogen pressure, the uptake reached 133% of theory for $\mathrm{NO}_{2} \longrightarrow \mathrm{NH}_{2}$. The cooled solution deposited $1-p$-aminophenoxy-7-phthalimidoheptane (55%), m. p. 107-109 ${ }^{\circ}$ [after recrystallisation from chloroform-light petroleum (b. p. $60-80^{\circ}$)]. Concentration of the mother-liquors afforded the hexahydro-compound (27%) which, after recrystallisation from chloroform-light petroleum, had, m. p. $73-75^{\circ}$ (Found: C, $70 \cdot 2 ; \mathrm{H}, 7 \cdot 9 ; \mathrm{N}, 7 \cdot 8 . \quad \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires $\mathrm{C}, 70 \cdot 3 ; \mathrm{H}, 8.4 ; \mathrm{N}, 7.8 \%$).

1-p-Aminophenoxy-5-maleimidopentane.-1-Maleimido-5-p-nitrophenoxypentane ($5 \cdot 9 \mathrm{~g}$.) was added to a solution of stannous chloride dihydrate (18 g .) in warm concentrated hydrochloric acid (27 ml .). The solution was kept for 5 min . at 100°, then slowly poured into a stirred mixture of 50% aqueous sodium hydroxide (50 ml .) and chloroform (100 ml .) maintained at 0°. The chloroform solution was immediately separated, washed, dried, concentrated, and diluted with light petroleum. Recrystallisation of the crystalline product from ethyl acetate-light petroleum gave the amine (71%), m. p. $122-124^{\circ}$ (Found: C, 64.7; H, $7 \cdot 2$; N, $10 \cdot 0$. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires $\mathrm{C}, 65 \cdot 7 ; \mathrm{H}, 6 \cdot 6 ; \mathrm{N}, 10 \cdot 2 \%$). The methanesulphonate had m. p. $194-195^{\circ}$ (Found: C, $51.4 ; \mathrm{H}, 5.9 ; \mathrm{N}, 7.75 ; \mathrm{S}, 9.1 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2}, \mathrm{CH}_{4} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 51.9$; $\mathrm{H}, 6.0$; $\mathrm{N}, 7 \cdot 6 ; \mathrm{S}, 8 \cdot 65 \%$) (from ethanol). Both the base and the methanesulphonate gave consistently low carbon analyses.

3-(5-p-Aminophenoxypentyl)rhodanine (40%), m. p. $104-106^{\circ}$ (from ethanol) (Found: C, $54 \cdot 1 ; \mathrm{H}, 5 \cdot 9 ; \mathrm{N}, 8.9 . \quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 54 \cdot 1 ; \mathrm{H}, 5 \cdot 8 ; \mathrm{N}, 9.0 \%$), and 3-(5-p-amino-phenoxypentyl)-5-benzylidenerhodanine (73%) (acetic acid used as solvent), m. p. 133-135

[^4]18 Dannerth, J. Amer. Chem. Soc., 1907, 29, 1319.
(from 2-ethoxyethanol) (Found: C, 63.1; H, 5.4; N, 6.7. $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$ requires C, 63.3; $\mathrm{H}, 5 \cdot 5 ; \mathrm{N}, 7 \cdot 0 \%$), were similarly prepared. $3-(5-\mathrm{p}-$ Aminophenoxypentyl)thiazolidine-2,4-dione, m. p. 107-109 (from ethanol) (Found: C, $57.3 ; \mathrm{H}, 6 \cdot 1 ; \mathrm{N}, 9.2 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 57 \cdot 2 ; \mathrm{H}, 6 \cdot 1 ; \mathrm{N}, 9 \cdot 5 \%$), was prepared (54%) by reducing the corresponding nitro-compound with stannous chloride or, preferably, with reduced iron powder and aqueous acetic acid.

1-p-Aminophenoxy-5-cyanoacetamidopentane.-A mixture of 1-amino-5-p-aminophenoxypentane (14.55 g .), ethyl cyanoacetate (8.36 g .), and methanol (20 ml .) was kept for 5 days in a stoppered flask. The solid was recrystallised from ethanol, giving the cyanoacetamide (81%), m. p. 92-93 ${ }^{\circ}$ (Found: C, 64.4; H, 7.2; N, 16.0. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}_{3}$ requires C, 64.35; H, 7.2; $\mathrm{N}, 16 \cdot 1 \%$). The acetyl derivative, m. p. $173-175^{\circ}$ (from ethanol) (Found: $\mathrm{N}, 13 \cdot 8 . \quad \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{3}$ requires $\mathrm{N}, 13.85 \%$), was also obtained directly from 1 - p-acetamidophenoxy- 5 -aminopentane and ethyl cyanoacetate.

Similarly prepared were 1-p-aminophenoxy-5-dichloroacetamidopentane (experiment by Mr. D. E. WRIGHT) (13%), m. p. $81-82^{\circ}$ (from benzene-light petroleum) (Found: N, $9 \cdot 0$; $\mathrm{Cl}, 23 \cdot 0$. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{N}, 9 \cdot 2 ; \mathrm{Cl}, 23 \cdot 2 \%$), and 1-p-aminophenoxy-5-trichloroacetamidopentane (66%), m. p. $97-99^{\circ}$ (from ether) (Found: $\mathrm{N}, 7 \cdot 9 ; \mathrm{Cl}, 31 \cdot 65 . \quad \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{3}$ requires $\mathrm{N}, 8 \cdot 2$; $\mathrm{Cl}, 31 \cdot 4 \%$).

1-p-Aminophenoxy-5-phthalimidinopentane.-Concentrated hydrochloric acid (100 ml .) was added during 1 hr . to a stirred, refluxing mixture of $1-p$-aminophenoxy-5-phthalimidopentane $(32.4 \mathrm{~g}$.) , tin (25 g .) and ethanol (200 ml .). After a further 17 hr . the solution was filtered and the cooled filtrate was slowly added to 50% aqueous sodium hydroxide (200 ml .). The precipitate was filtered off, washed with water, and extracted with boiling ethanol (400 ml .). The cooled extract afforded the phthalimidine (63%), m. p. $143-144^{\circ}$ (Found: C, 73•7; H, 7•1; $\mathrm{N}, 8.9$. $\quad \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 73 \cdot 5 ; \mathrm{H}, 7 \cdot 15 ; \mathrm{N}, 9 \cdot 0 \%$).

Except where stated, the amines in Table 2 were prepared by catalytic reduction of the corresponding nitro-compounds, usually over Raney nickel in ethanol, 2-ethoxyethanol, or dimethylformamide.

N-Substituted amines.

1-p-Dimethylaminophenoxy-3-phthalimidopropane.-1-p-Aminophenoxy-3-phthalimidopropane, m. p. $92-93^{\circ}$ (prepared by reduction of the nitro-compound; lit., ${ }^{19} \mathrm{~m} . \mathrm{p} .92-94^{\circ}$), was converted by methyl iodide and sodium carbonate in ethanol into the quaternary iodide (100%), m. p. $203-206^{\circ}$ (from water), which was pyrolysed under reduced pressure, giving 1-p-dimethylaminophenoxy-3-phthalimidopropane (100%), m. p. 121-122 (from ethanol) (Found: C, 70.7 ; $\mathrm{H}, 6.3 ; \mathrm{N}, 8 \cdot 4$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2}: \mathrm{C}, 70 \cdot 4 ; \mathrm{H}, 6.2 ; \mathrm{N}, 8.6 \%$) (lit., ${ }^{11} \mathrm{~m}$. p. $159 \cdot 6-$ $160 \cdot 9^{\circ}$).

1-Benzenesulphonamido-5-p-dimethylaminophenoxypentane, m. p. 71-72.5 ${ }^{\circ}$ (from ether) (Found: N, $7.5 ; \mathrm{S}, 8.9 . \quad \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{N}, 7 \cdot 7 ; \mathrm{S}, 8.8 \%$), was similarly obtained (96%) from its methiodide (96%), m. p. 183-185 (from water) (Found: N, 5.5; I, 25.4. $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{SI}$ requires $\mathrm{N}, 5 \cdot 55$; $\mathrm{I}, \mathbf{2 5 \cdot 1 5} \%$).

1 -(p-N-Methylacetamidophenoxy)-5-phthalimidopentane, prepared (53%) from p - N-methylacetamidophenol, 5 -phthalimidopentyl bromide, and sodium ethoxide in ethanol, had m. p. $83-85^{\circ}$ (from chloroform-ether) (Found: $\mathrm{N}, 7 \cdot 6 . \quad \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires $\mathrm{N}, 7 \cdot 4 \%$). 1-(p-N-Methylbenzamidophenoxy)-5-phthalimidopentane, m. p. 121- 124° (from methanol) (Found: $\mathrm{N}, 6 \cdot 2 . \quad \mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires $\mathrm{N}, 6 \cdot 3 \%$), was similarly obtained.

1-Amino-5-p-methylaminophenoxypentane, prepared by refluxing the foregoing acetyl derivative with concentrated hydrochloric acid, had m. p. $76-79^{\circ}$ [from light petroleum (b. p. 60$80^{\circ}$)], b. p. $200-205^{\circ} / 15 \mathrm{~mm}$. (Found: C, $69 \cdot 2 ; \mathrm{H}, 10 \cdot 1 ; \mathrm{N}, 13 \cdot 3 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ON}_{2}$ requires C, $69 \cdot 2$; $\mathrm{H}, \mathbf{9 . 7}$; $\mathrm{N}, 13 \cdot 4 \%$). It decomposed on storage.

1-Benzamido-5-(p-N-methylacetamidophenoxy)pentane.-The corresponding 5 -phthalimidocompound was treated with aqueous-alcoholic hydrazine, as previously described, and the amine formed was benzoylated, yielding the benzamide (61% overall), m. p. $110-112^{\circ}$ (from acetonelight petroleum) (Found: $\mathrm{N}, 7 \cdot 95 . \quad \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires $\mathrm{N}, 7 \cdot 9 \%$). 1-Benzamido-5-(p-Nmethylformamidophenoxy)pentane, m. p. 115-116 (from acetone-ether) (Found: C, 71.05; $\mathrm{H}, 7 \cdot 0 ; \mathrm{N}, 8 \cdot 3 . \quad \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires $\mathrm{C}, 70 \cdot 4 ; \mathrm{H}, 7 \cdot 0 ; \mathrm{N}, 8.2 \%$), was similarly prepared (12% overall). Partial hydrolysis of either the N-formyl or the N-acetyl derivative, with aqueous hydrochloric acid (l equiv.) in acetic acid, then afforded 1-benzamido-5-p-methylaminophenoxypentane (60%), m. p. $91-92^{\circ}$ (from acetone-light petroleum) (Found: C, $73 \cdot 5 ; \mathrm{H}, 7 \cdot 7$; N, 8.9. ${ }^{19}$ Matejka and Robinson, J., 1934, 1324.
$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 73.45 ; \mathrm{H}, 7 \cdot 7 ; \mathrm{N}, 9.0 \%$). The N -benzoyl derivative had m. p. $111-113^{\circ}$ (from benzene-ether) (Found: C, 75.0; H, 6.3; N, 6.6. $\quad \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires C, $75.0 ; \mathrm{H}, 6.8$; N, 6.7%).

1-Benzenesulphonamido-5-(p-N-methylacetamidophenoxy)pentane, m. p. 109-111 ${ }^{\circ}$ (from toluene-light petroleum) (Found: $\mathrm{N}, 7 \cdot 05 ; \mathrm{S}, 8 \cdot 4 . \quad \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{N}, 7 \cdot 2 ; \mathrm{S}, 8 \cdot 2 \%$), was similarly prepared and was hydrolysed to 1-benzenesulphonamido-5-p-methylaminophenoxypentane (62% overall), m. p. $83-85^{\circ}$ (from ethanol) (Found: $\mathrm{N}, 7 \cdot 8 ; \mathrm{S}, 9 \cdot 6 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{N}, 8.0 ; \mathrm{S}, 9.2 \%$). The latter base, on treatment with ethylene chlorohydrin and calcium carbonate in boiling water, yielded 1-benzenesulphonamido-5-[p-(2-hydroxy-N-methylethylamino)phenoxy]pentane (76%), m. p. $76-78^{\circ}$ (from benzene-light petroleum) (Found: $\mathrm{N}, 6.95 ; \mathrm{S}, 8 \cdot 3 . \quad \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{N}, 7 \cdot 1 ; \mathrm{S}, 8 \cdot 2 \%$).

1,2-Di-(p-5-benzamidopentyloxyanilino)ethane.-A mixture of 1 - p-aminophenoxy-5-benzamidopentane (14.9 g .), ethylene dibromide (4.7 g .), and ethanol (25 ml .) was refluxed for 20 hr ., cooled, and filtered. The solid was extracted with water and boiling ethanol. The insoluble residue was the piperazine derivative ($3 \cdot 3 \mathrm{~g}$., see below). The ethanolic extract yielded the dianilinoethane (24%), m. p. 155-157 ${ }^{\circ}$ (from ethanol) (Found: C, 73.1; H, 7.5; N, 8.9. $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{~N}_{4}$ requires C, $73 \cdot 3 ; \mathrm{H}, 7 \cdot 45 ; \mathrm{N}, 9.0 \%$).

1,4-Di-(p-5-benzanidopentyloxyphenyl)piperazine. -The foregoing dianilinoethane ($8 \cdot 1 \mathrm{~g}$.), ethylene dibromide (4.7 g .), and sodium hydrogen carbonate ($4 \cdot 2 \mathrm{~g}$.) were refluxed in 2 -ethoxyethanol (30 ml .) for 20 hr . The piperazine formed (96%) had m. p. $231-233^{\circ}$ (from 2 -ethoxyethanol) (Found: C, $74 \cdot 15 ; \mathrm{H}, 7 \cdot 3 ; \mathrm{N}, 8 \cdot 6 . \mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{~N}_{4}$ requires $\mathrm{C}, 74 \cdot 1 ; \mathrm{H}, 7 \cdot 45 ; \mathrm{N}, 8 \cdot 6 \%$).

1-p-Di-(2-chloroethyl)aminophenoxy-5-phthalimidopentane.-Phosphorus oxychloride (2.74 ml .), was added to $1-p$-di-(2-hydroxyethyl)aminophenoxy-5-phthalimidopentane (B.P. 769,706) $(4 \cdot 12 \mathrm{~g}$.) in dry benzene (15 ml .) and the mixture was refluxed for 2 hr ., poured on ice and extracted with benzene. The washed and dried extract was evaporated and the residue was triturated with ether. Crystallisation of the product from ethanol gave the chloroethyl derivative (81%), m. p. $107-108^{\circ}$ (Found: N, 6.2; Cl, 15.5. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{N}, 6 \cdot 2$; $\mathrm{Cl}, 15 \cdot 8 \%$).

1-(3-Chloro-p-tolyl)-4-(p-5-phthalimidopentyloxyphenyl)piperazine.-A mixture of the foregoing chloroethyl compound (17.96 g .), 3-chloro- p-toluidine ($5 \cdot 66 \mathrm{~g}$.), sodium carbonate ($4 \cdot 24 \mathrm{~g}$.) , and 2 ethoxyethanol (75 ml .) was refluxed for 20 hr ., cooled, and filtered. The solid product was washed with water and crystallised from chloroform-ethanol, yielding the piperazine (63%), m. p. $149-150^{\circ}$ (Found: N, $8 \cdot 2 ; \mathrm{Cl}, 6 \cdot 7 . \mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{Cl}$ requires $\mathrm{N}, 8 \cdot 1 ; \mathrm{Cl}, 6 \cdot 8 \%$).

1-p-(2-Amino-6-methylpyrimid-4-ylamino)phenoxy-5-phthalimidopentane.-A mixture of 2-amino-4-chloro-6-methylpyrimidine (14.35 g .), 1-p-aminophenoxy-5-phthalimidopentane ($32 \cdot 4$ g.), N-hydrochloric acid (100 ml .), and water (500 ml .) was refluxed for 1 hr ., cooled, and made just alkaline to phenolphthalein. Recrystallisation of the solid product from 2-ethoxyethanol gave the pyrimidine derivative (67%), m. p. $211-213^{\circ}$ (Found: C, 66.9 ; $\mathrm{H}, 5 \cdot 8$; $\mathrm{N}, 15 \cdot 9$. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}_{5}$ requires $\mathrm{C}, 66.8 ; \mathrm{H}, 5.8 ; \mathrm{N}, 16.2 \%$). Treatment with methyl sulphate in nitrobenzene for 1 hr . at 100° afforded the $1-$ metho(methyl sulphate) (75%), m. p. 186 - 188° (from ethanol) (Found: N, 12.8; S, 6.2. $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{~N}_{5} \mathrm{~S}$ requires $\mathrm{N}, 12 \cdot 5 ; \mathrm{S}, 5 \cdot 8 \%$).

4-Amidino-4'-(5-phthalimidopentyloxy)diazoaminobenzene.-A solution of sodium nitrite (1.43 g .) in water (24 ml .) was added slowly at $0-5^{\circ}$ to a mixture of p-aminobenzamidine dihydrochloride ($4 \cdot 16 \mathrm{~g}$.) and concentrated hydrochloric acid (2.9 ml .) in water (17 ml .). The resulting solution was stirred whilst a solution of $1-p$-aminophenoxy-5-phthalimidopentane $\left(6.28 \mathrm{~g}\right.$.) in acetic acid (20 ml .) (at 20°) was quickly added, followed immediately by saturated sodium acetate. The red precipitate was filtered off, washed with water, and recrystallised from ethanol, giving the amidine acetate (68%), m. p. $210-212^{\circ}$ (Found: C, $63.3 ; \mathrm{H}, 6.4 ; \mathrm{N}, 15 \cdot 8$. $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}_{6}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 63 \cdot 4 ; \mathrm{H}, 5 \cdot 7 ; \mathrm{N}, 15 \cdot 8 \%$).

5-Benzamido-1-p-carbamoylmethylaminophenoxypentane.-A mixture of 1-p-aminophenoxy5 -benzamidopentane (19.7 g .), chloroacetamide (6.18 g .), sodium carbonate (3.5 g .), and ethanol (200 ml .) was refluxed for 20 hr ., cooled, diluted with water, and filtered. Crystallisation of the product from ethanol gave the amide (61%), m. p. $161-163^{\circ}$ (Found: C, $68 \cdot 0 ; \mathrm{H}, 6 \cdot 6 ; \mathrm{N}, 11 \cdot 6$. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}_{3}$ requires $\mathrm{C}, 67 \cdot 6 ; \mathrm{H}, 7 \cdot 1 ; \mathrm{N}, 11 \cdot 8 \%$).

I-p-D-Glucosylaminophenoxy-5-phthalimidopentane.-A solution of 1-p-aminophenoxy-5phthalimidopentane (3.24 g .), D-glucose (1.8 g .), and 5% ethanolic calcium chloride (0.5 ml .) in ethanol (20 ml .) was refluxed for 1.5 hr ., cooled, and filtered. The glucosylamine (86%) had m. p. $110-115^{\circ}$ (Found: C, $60 \cdot 1 ; \mathrm{H}, 6.55 ; \mathrm{N}, 5 \cdot 6 ; \mathrm{H}_{2} \mathrm{O}, 3 \cdot 7 . \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}$ requires C, $\left.59.5 ; \mathrm{H}, 6 \cdot 4 ; \mathrm{N}, 5 \cdot 55 ; \mathrm{H}_{2} \mathrm{O}, 3 \cdot 6 \%\right)$.

1-Benzamido-5-p-D-glucosylaminopentane (83%), m. p. 119- 120° (from aqueous methanol) (Found: C, $61 \cdot 25 ; \mathrm{H}, 7 \cdot 3 ; \mathrm{N}, 6 \cdot 0 ; \mathrm{H}_{2} \mathrm{O}, 2 \cdot 0 . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~N}_{2}, 0 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 61 \cdot 4 ; \mathrm{H}, 7 \cdot 1$; $\mathrm{N}, 6 \cdot 0 ; \mathrm{H}_{2} \mathrm{O}, 1 \cdot 9 \%$), was similarly prepared.

Miscellaneous compounds.

4-(3-Chloro-p-tolyl)-1-(5-p-nitrophenoxypentyl)piperazine.-A mixture of 5 -p-nitrophenoxypentyl bromide (14.6 g .), 1 -(3 -chloro- p-tolyl)piperazine ${ }^{20}$ (10.65 g .), and ethanol (75 ml .) was refluxed for 40 hr ., cooled, and filtered from the hydrobromide (76%), m. p. $170-172^{\circ}$ (from ethanol) (Found: $\mathrm{N}, 8.3 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{Cl}, \mathrm{HBr}$ requires $\mathrm{N}, 8 \cdot 4 \%$), of the product. The free.base had m. p. 101-103 (from ethanol) (Found: N, 10.1; Cl, 8.6. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N} \mathrm{~N}_{3} \mathrm{Cl}$. requires N , $10.05 ; \mathrm{Cl}, 8.5 \%)$. Reduction with sodium sulphide gave 1-(5-p-aminophenoxypentyl)-4-(3-chloro-p-tolyl)piperazine (86%), m. p. $95-96^{\circ}$ (from ethanol) (Found: N, 10.9; $\mathrm{Cl}, 9.0$. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ON}_{3} \mathrm{Cl}$ requires $\mathrm{N}, 10 \cdot 8 ; \mathrm{Cl}, 9 \cdot 15 \%$).

1,4-Di-(5-p-nitrophenoxypentyl)piperazine.-A mixture of 5 -p-nitrophenoxypentyl bromide $\left(5.76 \mathrm{~g}\right.$.) and piperazine hexahydrate (1.94 g .) was heated for 40 hr . at 100°. Refluxing the residue with ethanol afforded the sparingly soluble dihydrobromide (92%), m. p. $253-255^{\circ}$ (Found: $\mathrm{N}, 8.3$; $\mathrm{Br}, 24.5 . \mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{~N}_{4}, 2 \mathrm{HBr}$ requires $\mathrm{N}, 8.45 ; \mathrm{Br}, 24.2 \%$). The lightsensitive base had m. p. 122-123 (from ethanol) (Found: C, 62.2; H, 7.6; N, 11.2. $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{~N}_{4}$ requires $\left.\mathrm{C}, 62 \cdot 4 ; \mathrm{H}, 7 \cdot 25 ; \mathrm{N}, 11 \cdot 2 \%\right)$. Catalytic reduction yielded $1,4-d i-(5-\mathrm{p}-$ aminophenoxypentyl)piperazine (92%), m. p. 124- 126° [from ethanol-light petroleum (b. p. $100-120^{\circ}$)] (Found: C, $70.3 ; \mathrm{H}, 9.5 ; \mathrm{N}, 12.5 . \mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{~N}_{4}$ requires C, $70.85 ; \mathrm{H}, 9.2$; N , 12.7%).

A further group of compounds, prepared by standard methods, and not described previously, is recorded in Table 3.

The authors thank Dr. H. J. Barber, F.R.I.C., for his continued interest, and Mr. S. Bance, A.R.I.C., for the analyses.

The Research Laboratories, May and Baker Ltd., Dagenham, Essex.
[Received, May 7th, 1959.]

[^5]
[^0]: ${ }^{3}$ Reissert and Manns, Ber., 1928, 61, 1308.
 ${ }^{4}$ McClelland and Gait, J., 1926, 923; McKibben and McClelland, $J ., 1923,172$.
 ${ }^{5}$ Du Pont, U.S.P. 2,444,536.
 ${ }^{6}$ Henbest and Owen, $J ., 1955,2968$.

[^1]: ${ }^{7}$ Brewster and Ciotti, J. Amer. Chem. Soc., 1955, 7ry, 6214.
 ${ }^{8}$ Anderson, Blodinger, and Welcher, ibid., 1952, 74, 5309.
 ${ }^{9}$ Ben-Ishai, J. Org. Chem., 1954, 19, 62.
 ${ }^{10}$ Perkin, J., 1887, 731.

[^2]: 12 Sifferd and du Vigneaud, J. Biol. Chem., 1935, 108, 753.
 ${ }_{13}$ Stiller, Harris, Finkelstein, Keresztesy, and Folkers, J. Amer. Chem. Soc., 1940, 62, 1785.
 14 Beckman, Ber., 1893, 26, 2631.

[^3]: ${ }^{15}$ May and Baker Ltd., B.P. 770,870.
 ${ }^{16}$ McClelland and Gait, $J ., 1926,923$.

[^4]: ${ }^{17}$ Dirscherl and Weingarten, Annalen, 1951, 574, 137.

[^5]: 20 Farbwerke Hoechst A.G., Belgian Patent 539,950.

