The Chemotherapy of Schistosomiasis. Part III.* 783. N-p-Aminophenoxyalkyl-amides, -imides, and -sulphonamides.

By J. N. ASHLEY, R. F. COLLINS, M. DAVIS, and N. E. SIRETT.

Many acyl- and diacyl-aminoalkyl ethers of p-aminophenol have been prepared by a number of routes. Some of these compounds are effective schistosomicides.

AFTER the discovery (see Part II *) that many simple ethers of p-aminophenol were curative against S. mansoni infections in mice, some basic alkyl ethers were examined. These were ineffective, but an intermediate in their preparation, 1-p-aminophenoxy-5-phthalimidopentane (IV; n = 5), showed high activity. This unexpected result led us to prepare a large number of related amides, imides, and sulphonamides, some of which are now reported. Many others have been briefly described in patent specifications 1 and are therefore omitted from this paper. The biological results will be published elsewhere.²

- * Part II, Ashley, Collins, Davis, and Sirett, J., 1959, 897.
- ¹ May and Baker Ltd., B.P. 769,706; 778,919; 808,952.
 ² Collins, Davis, Edge, and Turnbull, J. Pharm. Pharmacol., 1959, in the press.

[1959] The Chemotherapy of Schistosomiasis. Part III. 3881

The homologous series of 1-p-nitrophenoxy- ω -phthalimidoalkanes (III) was prepared (as far as the decane) by condensing the appropriate ω -phthalimidoalkyl bromide (I) with potassium *p*-nitrophenoxide. Catalytic reduction over Raney nickel afforded the amines (IV) in high yield. All the amines in this series formed bright yellow crystals giving almost colourless, dilute solutions in organic solvents, from which they were precipitated initially in a colourless amorphous form which became yellow as crystallisation set in. Reduction of the nitro-group of the ether (III) over platinum oxide under pressure invariably resulted in some reduction of the phthalimide ring. In one case, when the reduction was allowed to proceed to completion, the hexahydro-derivative (IXc) was isolated in good yield. The phthalimide base (IV; n = 5) with tin and hydrochloric acid gave the phthalimidine (Xc).

An alternative method used for the preparation of the phthalimide (III; n = 5) and for the analogous camphorimide, phthalylhydrazide, 2-pyridone, thiazolidine-2,4-dione, 2,3-dihydro-3-oxobenzisothiazole, butane-1,4-sultam, and naphthalene-1,8-sultam derivatives was the reaction of 5-p-nitrophenoxypentyl bromide (II) or iodide with the appropriate cyclic amide or imide. In the case of 2,3-dihydro-3-oxobenzisothiazole (XI; R = H), condensation of the sodium salt with 5-p-nitrophenoxypentyl bromide in 2-ethoxyethanol gave the N-alkylated derivative (XIa), the structure of which was confirmed by oxidation with hydrogen peroxide to the known saccharin compound (XIIa).¹ However, when the condensation was effected by using potassium carbonate in acetone, the product was an isomer of (XIIa), probably the O-ether (XIIIa). Both N- and O-alkyl-2,3-dihydro-3-oxobenzisothiazoles are known.³ Since chemical reduction of the nitro-group also appeared to rupture the heterocyclic ring,⁴ the acetamido-derivative (XIb) was made from 5-pacetamidophenoxypentyl bromide and was hydrolysed with acid to the required amine (XIc).

In a third route employed for the 3-nitrophthalimide, tetrachlorophthalimide, and homophthalimide analogues of (III; n = 5), the phthalimide was hydrolysed with hydrazine to 1-amino-5-*p*-nitrophenoxypentane (V; n = 5) which was fused with the appropriate cyclic anhydride. 5-Amino-1-*p*-nitrophenoxypentane served also as an intermediate for the preparation of a large number of aliphatic, aromatic, and heterocyclic amides (VII; n = 5) and sulphonamides, most of which were made by standard acylation procedures.¹ The maleamic acid (VII; n = 5; $R = CH:CH\cdot CO_2H$) obtained from nitro-amine (V; n = 5) and maleic anhydride was cyclised to the maleimide by acetic anhydride and sodium acetate,⁵ and the nitro-group was reduced with stannous chloride. The maleimide ring of the base obtained was very sensitive to alkali, readily opening to give the maleamic acid (VIII: n = 5; $R = CH:CH\cdot CO_2H$). The analogous glutaramic acid (XVa; R' =H), similarly prepared, was best cyclised to the imide (XVIa) by acetyl chloride.⁶ When

³ Reissert and Manns, Ber., 1928, 61, 1308.

⁴ McClelland and Gait, J., 1926, 923; McKibben and McClelland, J., 1923, 172.

⁵ Du Pont, U.S.P. 2,444,536.

⁶ Henbest and Owen, J., 1955, 2968.

				ı											•			~	•				S						6.9				3.9			
	(%		()))) (22	55	9	5 S	5	•		_		_	55 16-6			16-1	1.61			(%) P	ž	9-9 7-4	9-4	7.1	1.1	6-05	0.6	12-4	$6.45 \\ 8.2$		6.9 12.4			
	Required (%)		6.8 9			7-25				6.9				7.9 1	9.9	10.5	Г	6.9	10.01	``		Required (%)	Ĥ		5.4	0.1	2.6 9.7			6.2	0.9 2.6		6.2			
	Reg		5.1	6.5			5.8						ż.				0.9			° CI		щ	с С		6.80	30.6	73.1			67.25	58-0 67-0		67-25			
	ł	် ပ	64-9	66.7	62.1		62.8	62.1	62-1	56.2	64.6		63-4	1T/.			62.3	•		ic acid.	c acid	U			Ŭ	,			7-05	•			4.0			
			101	1.61													16.3			8-251	7.05	9.7 7.91 d Overall from carboxylic acid.		(%)	z	9-6 7-2	9-4	7.1	7.1	6.1 d 0.05	6.8 8.8	2.2	6-55 8-1		7.1 12-25	
	1 (%)	z	6, 1 6, 1	- 0. 0	11-4	1.7	8.4	7:2	7-45	9.9	8.3	10-05	xo o xo o	6-9	0.2	9-95	10.9	0 0 1 0	0.0	rom ca:		Found	Н		5.75	r v		-	-		6.2 6.25		6-4 1			
	Found	ц	0.9	6.5))	5.9	5.7	5.3	5.95	5.8	7.9	0	n xo c	1.0			5.6			rerall fi		щ	с С		1-69		73.1				67-25		67.15			
TABLE 1. Nitro-amides, p-R·C ₆ H ₄ ·O·[CH ₂] _n ·NHR'.	t	ن د	65-5	66.65	2	62.0	62.5	62.2	62.0	56.3	64-4		63-4	11-4			62-3				~	į	-		66											
	1 27 -		C ₁ ,H ₁₈ O ₄ N ₂		C ₁ ^R H ₁₀ O ₆ N ₃										C22112804112 C.,H.,O,N,CI,	C ₂ , H ₃ , O ₆ N ₃		C ₂₀ H ₂₆ O ₅ N ₂ S	$C_{18} T_{22} C_{5} N_{23}$	ocetoxv-derivative.	acetoxy-derivative.	Compounds, p-NH2*C ₆ H4*O*[CH2]n [*] K Recryst. from Formula	C ₁₆ H ₁₄ O ₃ N ₂ CHO.NCH.O.S	$_{17}^{1}H_{16}^{1}O_{3}^{1}N_{2}^{2}$	$C_{17}H_{16}O_{3}N_{2},CH_{4}O_{3}S$	18 018 03-12 34 H30 03 N3	CitHicoN'CI	19.H10℃5.N3 19.H100.N3,CH4O3S	¹⁹ H ²¹ O ₃ N ₃	C20H22O3N2,CH4O3S C10H10AN		C ₂₁ H ₃₀ O ₃ N ₂ ,0.5H ₂ SO ₄ C ₁₉ H ₂₁ O ₃ N ₃				
		Recryst. from	Aq.AcOH E+OH	AcOH	COMe	COMe ₂	PhMe	C ₆ H ₆	tOH	AcOH	AcOH	Aq. EtOH		Aq. CUMe2	EtOH	EtO·[CH,], OH	6	EtOH	A4. EtOH An FfOH	Prepared by alkaline hydrolysis of the acetoxy-derivative.	Combounds h-NH	TILL & Commondation	Recryst. from	EtOH	r CHCl ₃ -Et ₂ O	EtOH-Et ₂ O E+OH		2-Ethoxyethanol (-Et ₂ O		EtOH (EtOH-Et ₂ O (EtOH ()			
		ъ.	102—103° A	-133 133	-150		-150		-166	11		080	09	104-106 A	-05 114	-185	-217-5	73-75 E		Prepared by alk		Prepared by al TABLE 2	Prepared by a TABLE 2			$159-160^{\circ}$ 198-199	-69	163-	6	110-182	183-	105	187-189 136-138		183—185 169—171	
		(%)	82	13 6	49 0	54	16ء	11	<u>56</u>	22 d	5	69	00	03 09				28	58 77	de.		Yield	re (%)		94		70	55 90 b	F e		1 95 95		4 54 43			
	λ.	<u> </u>			- 41	1.0		~					τ.							ohthalin	1		Derivative	Base Me [.] SO.H	Base	Me SO ₃ H	Base	Base	Me·SO ₃ F	Base	Me•SO3H Base		0.5H2SO			
		Ч	on No		NO.	NO.	NO.	NO.	NO	NO2	NO	NO		ວິດ ຊຸຊ	5 NO1 Ph- $[CH_1]_{1,CO}$ 5 NO2 $2,4-Cl_{1,CH_1}^{-1}$ -O-CH ₁ -CO 5 NO2 $C,H_{1,CO}^{-1}$,N-CH ₂ -CO 5 NO1 $C,H_{1,CO}^{-1}$,N-CH ₂ -CO	AcŇH	on No	oo v v				R	Phthalimido	Phthalimido	Dhthalimida	Phthalimido	Tetrachlorophthalimido	o-nunduiriamma	3-Aminophthalimido	Homophthalimido 3.4-Dihydro-2.4-dioxo-5.6-	benz-I,3-oxazin-3-yl	Camphorimido 1,2,3,4-Tetrahydro-1,4-dioxo- phthalazin-2-vl				
																							u	67	e	-	10	ນດາແ	n N	ŝ	ດເດ		ເວັເວ			

[1959]	The Chemo	otherapy of	Schistosomiasis.	Part III.	3883
S	6.8	8 5		م د	ი დ. თ. ნ
Required (%) H N 7.6 9.2 8.4 8.4 6.2 13.8	12.6 12.6 2.8 2.8 2.9 2.9 2.9	$\begin{array}{c} 9.5\\ 7.2\\ 7.2\\ 11.1\\ 11.8\\ 11.8\\ 11.8\\ 10.0\end{array}$	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	12:25 111-8 8:28 6:04-4 0:04-4 0:05 0:05 0:05 0:05 0:05 0:05 0:05 0:0	6.3 10-3 8-5 7-6
Requir H 8-4 6-2	6-0 8-1 11-2 9-6	7.5	9-2 6-6 5-7-75 5-6 6-7-0 6-4 6-4 6-4 6-4 6-4 6-4 6-4 6-4 6-4 6-4	6.1 7.7 7.0 7.0	7-35 8-7 6-5
66.2 68.6 59.0	75-0 64-9 67-2 69-8	61-2 77-25 67-6 60-2	71.0 74.6 73.1 57.3 68.8 68.8 66.7 60.6	63-0 67-6 73-1 74-3 68-8	70-6 69-5 68-5
S	7.2	လ လ			10.35
$egin{array}{c} 1 \ (\%) \ N \ 9.8 \ 8.4 \ 8.4 \ 13.7 \ \end{array}$	12:40 8:84 4:95 8:84 4:00 7:95 7:95	$\begin{array}{c} 9 \cdot 7 \\ 7 \cdot 2 \\ 7 \cdot 1 \\ 11 \cdot 1 \\ 11 \cdot 1 \\ 10 \cdot 1 \end{array}$	9.2 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	1112:2 111-0 2:0 2:0 2:0 2:0 2:0 2:0 2:0 2:0 2:0 2:	$\begin{array}{c} 6.3\\ 10.2\\ 8.5\\ 7.6\end{array}$
Found H 7·75 8·25 6·3 1	6.1 6.1 8.3 11.1 10.0	7.25 7.1 7.4 9.0	6.95 6.95 6.95 6.95 6.95	6·1 6·9 6·8 6·9	7.5 9.0 6.7
C 65.85 68.7 59.05	75-0 65-1 67-1 69-8	61-25 76-8 67-6 [60-6	71.4 71.4 71.4 72.0 57.4 57.4 68.7 68.7 60.35 60.35	$\begin{array}{c} 63.1 \\ 67.5 \\ 72.9 \\ 74.05 \\ 69.0 \end{array}$	70-3 69-7 68-4
(Continued.) Γ Formula $C_{16}H_{20}O_{1N}$ $C_{19}H_{26}O_{6N}$ OH $C_{1.14}O_{10}O_{10}$	Cas H 24 O 3 N 2 Cas H 24 O 3 N 2 Cas H 26 O 2	Custing Custin	C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	C ₁₈ H ₂₁ O ₄ N ³ C ₂₀ H ₂₆ O ₃ N C ₁₈ H ₂₈ O ₃ N C ₁₈ H ₂₈ O ₈ N ³ C ₁₈ H ₂₈ O ₈ N ³ C ₁₈ H ₂₀ O ₈ N ² C ₂₄ H ₂₀ O ₈ N ² C ₂₆ H ₂₈ O ₃ N ² C ₁₈ H ₂₈ O ₃ N ² C ₁₈ H ₂₈ O ₃ N ²	C ₂₉ H ₃ rO ₂ N ₃ , 2CH ₄ O ₃ S C ₁₆ H ₂₆ O ₂ N ₂ C ₁₆ H ₂₄ O ₂ N ₂ C ₁₆ H ₂₆ O ₂ N ₂ C ₁₄ H ₂₆ O ₄ N ₂ C ₂₁ H ₂₄ O ₄ N ₂
TABLE 2. (Co Recryst. from EtOH C ₆ H ₆ NMe ₂ -CHO-F+OH	EtOH EtOH-Et ₂ O C ₆ H ₆ C ₆ H ₆ EtOH-Et ₂ O EtOH-Et ₂ O	CHCI3-Pet EtOH-Et3O EtOH-Pet EtOH EtOH EtOH EtOH	C ₆ H ₆ EtOH EtOH CHCI ₃ -Pet EtOH EtOH Aq. MeOH PhMe Aq. H-CO-NMe ₂ EtOH	EtOAc EtOH EtOH EtOH- Et_2O Et_2O- Pet Et_2O-Pet Aq. EtOH EtOH	EtOH-Et ₂ O EtOH C ₆ H ₆ EtOH EtOH
M. P. 109 99—100 211—214	$\begin{array}{c} \left(\begin{array}{c} \text{efferv.} \\ \text{efferv.} \\ 112-113 \\ 177-179 \\ 74-76 \\ 77\cdot 5-79 \\ 122\cdot 5-123\cdot 5 \\ 86-87 \\ 86-87 \\ 99 \end{array} \right)$	78-80 142-143 101-102-5 104-5-106-5 156-5158-5 119121 <i>s</i>		$139-141 \\ 173.5-174.5 \\ 123.5-174.5 \\ 272-274 \\ 272-75 \\ 72-75 \\ 77-78 \\ 105-107 \\ 107 \\$	137-139 114-115 9798 117119 104106
Yield $(\%)$ (%) 93 57 °	7 73 89 74 87	80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	85 87 88 88 88 87 86 77 80 80 80 80 80 80 80 80 80 80 80 80 80	75 8 89 80 96 96 728 80 728	82 96 ¹ 78 ⁿ 94
Derivative Base Base Base	Base Me·SO ₃ H Base Base Base Base Base Base	Base Me·SO ₃ H Base Base Base Base Base	Base Base Base Base Base Base Base Base	Base Base Base 2Me·SO ₃ H Base Base Base	2Me·SO ₃ H Base Base Base Base
 μ R δ β-Ethyl-β-methylglutarimido δ Hexahvdro-2.4.6 trioxonvr- 			5 Hexahydrobenzamido 5 N(COPh) 5 NH-COPh 6 NH-CO-C ₆ H ₄ Me- <i>p</i> 6 NH-CO-C ₆ H ₄ OH- <i>p</i> 5 NH-CO-C ₆ H ₄ OH- <i>p</i> 5 NH-CO-C ₆ H ₄ -CO ₂ Me- <i>p</i> 5 NH-CO-C ₆ H ₄ -CO ₂ Me- <i>p</i> 5 NH-CO-C ₆ H ₄ -CO ₂ Me- <i>p</i> 5 NH-CO-C ₆ H ₄ -SO ₂ Me- <i>p</i>		 5 N(COPh)-[CH4]s⁻⁰-C₆H₄.NH₂-P 5 1,2.Dihydro-2-oxopyridyl 5 2.9.Dihydro-3-oxobenzisothi- azol-2-yl 5 2-Phthalimidoethoxy

388	4	Ashley, Collins,	Davis, and Sirett:
	S	9.45 8.55 8.75 8.75 10.95 17.8 17.8 17.8 17.8 8.4 8.4	ed, Cl, 1-(N)-1 2-0x0- nd. 1. 1.
(/0) T	N N N N N N N N N N N N N N N N N N N	$\begin{array}{c} 8 \\ 10.4 \\ 12.0 $	Required, Cl, ^A By alkaline ^b From $1-(N-$ filhydro-2-oxo- ibed in ref. 1. -compound. N 8.6 9.4 1.44 7.25 1.44 7.95 8.6 9.6 9.4 7.95 1.44 7.95 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.2 1.0-0 6.6 9.4 7.95 1.44 7.95 1.44 7.95 1.44 7.95 1.44 7.95 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 9.6 9.6 9.6 1.44 7.95 1.765 8.6
	H N H N 5.95 8.3 7.7 12.7 7.3 10.8 8.3 11.6	6.7	 I., 30.2. Rec. I. 1 mm. * Fill mm. * Fill mm. * Fill mm. * * * * * * * * * * * * * * * * * *
μ	C C 66.6 65.1 66.5 66.9 66.9	57.7	CL, 3 5. CL, 3 0.01 maxy-5- 0.01 maxy-5- 0.002 for 5 64-7 65-4 65-4 65-4 65-4 70-4 70-4
	N	$\begin{array}{c} 9.6\\ 8.9\\ 9.0\\ 11.3\\ 9.1\\ 9.1\\ 11.3\\ 8.35\\ 8.35\end{array}$	a Found: Cl, 30.2. Required OEt, 5:4%. 215-220°[0.01, mm. P-nitrophenoxy-5-(1,2) tethanesulphonate desc droxide at 100°. N C Require (%) N C Require 6:6 6:6 6:6 6:6 6:6 6:6 7:3 6:6 6:6 7:3 6:6 6:6 6:7 7:3 6:6 7:4 6:6 6:6 6:6 7:3 6:6 7:4 7:5 8:6 7:7 8:7 7:4 6:2
(/0/	$1000 \text{N}^{1/(0)}$ N 13.4 13.4 112.6 110.4 111.4	8.2 7.4 10.3 11.6 11.6 7.7 7.7 1 8.8 8.8 7.3	e. d I 215–111 Methan Methan Vdroxii 33 9 9 11 (%) 1 9 11 (%) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	H N N N N N N N N N N N N N N N N N N N	4 Q	5.9 215- B. p. 215- J. From 1-P-ni 7. from 1-P-ni 1. ° Metha
P	C C 11.55 66.25 866.25 866.75 666.75	57.5	ifrophenoxypentane Found: $OEt, 5.8$. xypentane. B. p. le, or directly from I v.) in ethanol. $^{\circ}$ M -aqueous sodium hy c H ₃ O 64.8 8.0 65.3 6.0 64.6 5.0 65.65 5.9 70.4 6.2 70.35 6.2
	- 11 666 699 669 669		nittroph noxypen noxypen nor c 2h-aque 2h-aque 2h-1-5H₂O ⊢1-5H₂O
(Continued.)	Formula C. ₈₀ H2003N2 C.22H3003N2 C.24H3403N4 C.24H3602N2 C.30H3804N2 C.27H4004N4	C ₂₇ H ₄₀ O ₄ N ₄ ,2CH ₄ O ₅ S C ₂₀ H ₂₄ O ₃ N ₂ S C ₁₈ H ₂₄ (3,N ₂ S,H ₂ O P C ₁₉ H ₂₄ (3,N ₂ S,H ₂ O P C ₁₉ H ₂₅ O ₄ N ₃ S,H ₂ SO C ₁₇ H ₂₃ O ₃ N ₃ S, C ₁₇ H ₂₃ O ₃ N ₃ S,2CH ₄ O ₃ S C ₁₈ H ₂₄ O ₃ N ₂ S C ₂₁ H ₂₄ O ₃ N ₂ S C ₂₁ H ₂₂ O ₃ N ₂ S	 ^e Overall from 1-amino-5-<i>p</i>-nitrophenoxypentane. ^e Not obtained crystalline. Found: OEt, 5.8. from 1-anilino-5-<i>p</i>-nitrophenoxypentane. B. p. 2 in From the preceding amine, or directly from 1- in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in ethanol. • Me in x-hydrochoric acid (1 equiv.) in the set acid (1 equiv.) in the set acid (1 equiv.) in the set aci
TABLE 2. (Con	Recryst. from Aq. EtOH EtOH 2-Ethoxyethanol Xylene EtOH	EtOH EtOH EtOH Aq. MeOH Aq. EtOH MeOH EtOH $-Et_2O$ EtOH EtOH	
	M. P. 101103 160162 150152 176178 133135 and	227-230 121-122 168-169 117-119 117-119 128-201 128-201 128-201 126-128 76-77 73 106-107	s of the N-acetyl de 1, 17.7. Required, ⁱ With decomp. ^j ⁱ By use of sodiu ve, by refluxing for From the preceding M. P. M. M. P. M. M. M
Viola	1100 (%) 72 53 53 94	79 67 64 81 81 81 92	Ysis of Cl, 1' Cl, 1'
	Derivativ e Base ° Base Base Base Base	Me·SO ₃ H Base Base Base H1 ₂ SO ₄ Base Base Base Base Base Base	<pre>b By acid hydrolysis o: oleum. / Found: Cl,] ding methyl ester. ' \ itrophenoxypentane. ' hthe N-acetyl derivative, ired H₂O, 4.9%. ' Frr R' TA TA TA TA TA TA TA TA TA C₆H₄(CO)₂N mino C₆H₄(CO)₂N mino C₆H₄(CO)₂N C₆H₄(CO)₂N mino C₆H₄(CO)₂N C₆H₄(CO)₂N C₆H₄(CO)₂N C₆H₄(CO)₂N C₆H₄(CO)₂N C₆H₄(CO)₂N C₆H₄(CO)₂N C₆H₄(CO)₂N C₆H₄(CO)₂N C₆H₄(CO)₂N C₆H₄(CO)₂N</pre>
	 R 2 4-Phthalimidobut-1-enyl 5 NH-CO-NH ' 5 NH-CO-CO-NH ' 5 p-NH-CO-C₆H₄-CO-NH ' 5 NH-CO-[CH₂]₃-CO-NH ' 	 8 NH·SO₂Ph 5 NH·SO₂·C₆H₄Me-φ 5 NH·SO₂·C₆H₄·NHAc-φ 5 NH·SO₂·C₆H₄·NH₂-φ 5 NP·SO₂Me 5 NP·SO₂Me 5 NMe·SO₂Me 5 Tetrahydro-1,1-dioxo-1,2-thi-azin-2-yl 5 1,1-Dioxonaphtho[1,8a,8-cd]-ix-hinedoin 	$\label{eq:relative} \begin{array}{c} \text{I.it.}^{19} \text{ m. p. 92-94°. }^{9} \text{ By acid hydrolysis of the N-acetyl derivative}\\ \text{30.7\%. }^{6} \text{ Pet = light petroleum. }^{1} \text{ Foundi: Cl. 17.7. Required, Cl. 17.9}\\ \text{hydrolysis of the corresponding methyl ester. }^{1} \text{ With decomp. }^{1} \text{ Overall benzyloxybenzamidol-5-$-nitrophenoxypentane. }^{1} \text{ By use of sodium sulphin pyridyl}) pentane. }^{1} \text{ Found: H}_{2}\text{O, 4-2}. \text{ Required H}_{2}\text{O, 4-9}\text{W}_{2}\text{ evelyl derivative, by refluxing for 48 hr. w}\\ pyridyl] pentane. }^{n} From the N-acetyl derivative, by refluxing for 48 hr. where the preceding acetyl derivative by refluxing for 48 hr. where the preceding acetyl derivative. By the preceding acetyl derivative by traffuxing for 48 hr. where the preceding acetyl derivative. By the preceding acetyl derivative. By traffuxing for 48 hr. where the preceding acetyl derivative. By traffuxing for 48 hr. where the preceding acetyl derivative. By traffuxing for 48 hr. where the preceding acetyl derivative. By traffuxing for 48 hr. where the preceding acetyl derivative. By traffuxing for 48 hr. where the preceding acetyl derivative. By traffuxing for 48 hr. where the preceding acetyl derivative. By traffuxing for 48 hr. where the preceding acetyl derivative. By traffuxing for 48 hr. where the preceding acetyl derivative. By traffuxing for 48 hr. where the preceding acetyl derivative. By traffuxing for 48 hr. where the preceding acetyl derivative. By traffuxing for 48 hr. where the preceding acetyl derivative. By traffore the precedi$

preparation of this imide (XVIa) was attempted directly from 5-p-nitrophenoxypentyl bromide and glutarimide (XIV), the product was either the ethyl ester (XVa; R' = Et) (when sodium ethoxide in ethanol was used for the condensation) or the 5-p-nitrophenoxypentyl ester (XVIIa) (when sodium hydroxide in aqueous ethanol was used).

Direct reaction of the amine (V; n = 5) with p-acetamidobenzoic acid to give the amide (VII; n = 5, $R = p - C_6 H_4 \cdot NHAc$) was effected by using toluene-p-sulphonyl chloride in pyridine ⁷ or tetraethyl pyrophosphite in diethyl phosphite.⁸ The latter method proved useful also in the synthesis of the pantothenamide (XIXc), providing the amide

(XVIIIa) from the starting nitro-amine (V; n = 5) and benzyloxycarbonyl- β -alanine in high yield. Removal of the protecting group with hydrogen bromide-acetic acid⁹ and treatment of the β -alanylamide (XXa) with DL-pantolactone gave the nitro-pantothenamide (XIXa), which was reduced catalytically to the non-crystalline base (XIXc).

Attempts to reduce only the nitro-group of the cyanoacetamide (VII; n = 5; R = CH_2 ·CN) failed, but the amine (VIII; n = 5; $R = CH_2$ ·CN) was formed in high yield by preferential reaction of ethyl cyanoacetate with the aliphatic amino-group of 1-amino-5-p-aminophenoxypentane (VI; n = 5). Other reactive esters such as methyl dichloroacetate and trichloroacetate behaved similarly. Special methods employed for individual compounds included the reaction of the nitro-amine (V; n = 5) with 2-phenyloxazolone to form the hippuramide (VII; n = 5; $R = CH_2 \cdot NH \cdot COPh$), and successively with methyl salicylate and with ethyl chloroformate to give first the salicylylamide (XXIa) and then the 3,4-dihydro-2,4-dioxo-5,6-benz-1,3-oxazine (XXIIa). Catalytic reduction then gave the required amines (XXIc) and (XXIIc).

Since both the 5-phenylpentyl ether ¹ and the 5-phthalimidopentyl ether of p-aminophenol were active schistosomicides, the preparation of the 5-phenyl-5-phthalimidopentyl ether (XXVIb) was undertaken. 4-Benzoylbutyl bromide¹⁰ was converted into the p-nitrophenyl ether (XXIIIa) which was reduced by the Meerwein–Ponndorf method to

⁹ Ben-Ishai, J. Org. Chem., 1954, 19, 62.
¹⁰ Perkin, J., 1887, 731.

⁷ Brewster and Ciotti, J. Amer. Chem. Soc., 1955, 77, 6214.

Anderson, Blodinger, and Welcher, ibid., 1952, 74, 5309.

the alcohol (XXIVa). The bromide (XXVa), formed by means of phosphorus tribromide, was treated with potassium phthalimide, yielding the nitro-imide (XXVIa) which was reduced catalytically to the base (XXVIb). Treating the phthalimide (XXVIa) with hydrazine gave the free nitro-amine which was successively benzoylated and reduced to the analogous 5-benzamido-5-phenyl ether (XXVIIb).

Condensation of p-N-methylacetamidophenol with 5-phthalimidopentyl bromide and subsequent hydrolysis of the acetyl group led to the N-methyl derivative of the aminoimide (IV; n = 5). This compound was remarkable for its scarlet colour in the solid

state, although its dilute solutions were colourless. The corresponding NN-dimethyl derivative was only pale yellow. The colour of the primary amines of this series had already been noted by Belotsvetov,¹¹ who recorded the orange-yellow colour of both 1-p-amino-phenoxy- and 1-p-dimethylaminophenoxy-3-phthalimidopropane. N-Acetyl-1-p-methyl-aminophenoxy-5-phthalimidopentane with hydrazine gave the 5-amino-derivative which was benzoylated and hydrolysed to 5-benzamido-1-p-methylaminophenoxypentane: use of the N-formyl compound was less satisfactory. An attempt to prepare this amine by partial benzoylation of 5-amino-1-p-methylaminophenoxypentane was unsuccessful, giving a mixture of dibenzoyl derivative and unchanged amine.

Several miscellaneous secondary and tertiary amines of a similar type are described in the Experimental section.

Experimental

Light petroleum refers, unless otherwise stated, to the fraction of b. p. 40-60°.

Nitro- and acylamido-compounds.

1-p-Nitrophenoxy-2-phthalimidoethane was prepared (22%) from potassium p-nitrophenoxide and 2-phthalimidoethyl bromide by the method already described.¹ After crystallisation from acetic acid, it had m. p. 152—154° (Found: N, 9·2. $C_{16}H_{12}O_5N_2$ requires N, 9·0%). Similarly prepared in either ethanol or 2-ethoxyethanol were: 1-p-nitrophenoxy-3-phthalimidopropane (44%), m. p. 189—191·5° (from dioxan) (Found: N, 8·75. $C_{17}H_{14}O_5N_2$ requires N, 8·6%); 1-p-nitrophenoxy-4-phthalimidobutane (64%), m. p. 119° (from acetic acid) (Found: C, 63·8; H, 4·7; N, 8·5. $C_{18}H_{16}O_5N_2$ requires C, 63·5; H, 4·7; N, 8·2%); 1-p-nitrophenoxy-10phthalimidodecane (60%), m. p. 102—103° (from acetic acid) (Found: C, 67·8; H, 7·0; N, 6·6. $C_{24}H_{28}O_5N_2$ requires C, 67·8; H, 6·6; N, 6·6%); and 1-p-nitrophenoxy-6-phthalimidohex-3ene (55%) (from 6-phthalimido-1-toluene-p-sulphonyloxyhex-3-ene; B. P. 769,706), m. p. 118—119° (from aqueous acetic acid) (Found: C, 65·7; H, 5·2; N, 7·5. $C_{20}H_{18}O_5N_2$ requires C, 65·6; H, 4·9; N, 7·65%).

1-Amino-5-p-nitrophenoxypentane.—1-p-Nitrophenoxy-5-phthalimidopentane was treated with aqueous hydrazine in ethanol as already described,¹ but the amine was more conveniently liberated by shaking the resulting complex with chloroform and warm 2N-sodium hydroxide. The amine had b. p. 160—165°/0.02 mm. (partial decomp.) (Found: N, 12.9. $C_{11}H_{16}O_3N_2$ requires N, 12.5%). Similarly prepared were: 1-amino-5-p-aminophenoxypentane (94%), m. p. 67—69° [from light petroleum (b. p. 100—120°)] (Found: N, 14.1. $C_{11}H_{18}ON_2$ requires N, 14.4%) [dimethanesulphonate, m. p. 244—246° (from ethanol) (Found: N, 7.4; S, 16.8. $C_{11}H_{18}ON_2$, CH₄O₃S requires N, 7.25; S, 16.6%)]; and 1-p-acetamidophenoxy-5-aminopentane (91%), m. p. 137—139° (from benzene) (Found: C, 65.7; H, 8.45; N, 11.9. $C_{13}H_{20}O_2N_2$ requires C, 66.1; H, 8.5; N, 11.85%) [methanesulphonate, m. p. 155—157° (from ethanol) (Found: N, 8.4. $C_{13}H_{20}O_2N_2$, CH₄O₃S requires N, 8.4%)].

¹¹ Belotsvetov, J. Gen. Chem. U.S.S.R., 1944, 14, 226.

1-p-Nitrophenoxy-5-tetrachlorophthalimidopentane.—A mixture of 5-amino-1-p-nitrophenoxypentane (22·4 g.) and tetrachlorophthalic anhydride (28·6 g.) was heated at 180—190° for 2 hr., cooled somewhat, and dissolved in hot 2-ethoxyethanol (150 ml.). The cooled solution deposited the tetrachlorophthalimide (96%), m. p. 165—167° (Found: N, 5·7; Cl, 28·5. $C_{19}H_{14}O_5N_2Cl_4$ requires N, 5·7; Cl, 28·8%). Similarly prepared were: 1-p-nitrophenoxy-5-3'-nitrophthalimidopentane (84%), m. p. 163—164·5° (from 2-ethoxyethanol) (Found: N, 10·45. $C_{19}H_{17}O_7N_3$ requires N, 10·5%); 1-p-acetamidophenoxy-5-3'-nitrophthalimidopentane (67%), m. p. 132—134° (from ethanol) (Found: N, 10·2. $C_{21}H_{21}O_6N_3$ requires N, 10·3%); and 1-homophthalimido-5-pnitrophenoxypentane (65%), m. p. 144—145° (from acetone) (Found: C, 65·2; H, 5·6; N, 7·5. $C_{20}H_{20}O_5N_2$ requires C, 65·2; H, 5·4; N, 7·6%).

1-(5-p-Nitrophenoxypentyl)barbituric Acid.—A mixture of 1-p-nitrophenoxy-5-ureidopentane¹ (61 g.), malonic acid (24 g.), and acetic acid (55 ml.) was heated to 70—80° and treated dropwise with acetic anhydride (45 ml.). After a further 8 hr. at 90°, the mixture was cooled, diluted with water (84 ml.), and filtered from some solid [m. p. 178·5—180° (from acetone), which was possibly an acetyl derivative (Found: C, 54·0; H, 5·3; N, 11·1. Calc. for $C_{17}H_{19}O_7N_3$: C, 54·1; H, 5·0; N, 11·1%)]. Further dilution with water (240 ml.) gave the substituted barbituric acid, m. p. 149—151° (from ethanol) (Found: C, 53·85; H, 5·1; N, 12·5. $C_{15}H_{17}O_6N_3$ requires C, 53·7; H, 5·1; N, 12·5%).

1-p-Nitrophenoxy-5-salicylylamidopentane.—A mixture of 5-amino-1-p-nitrophenoxypentane (45 g.) and methyl salicylate (15·2 g.) was heated at 120° for 5 hr., cooled, and dissolved in chloroform. The solution was washed with 2N-hydrochloric acid and water, dried, and evaporated. The residue was crystallised from benzene, yielding the *amide* (73%), m. p. 123—125° (Found: N, 8·2. $C_{18}H_{20}O_5N_2$ requires N, 8·15%).

3,4-Dihydro-3-(5-p-nitrophenoxypentyl)-2,4-dioxo-5,6-benz-1,2-oxazine.—Ethyl chloroformate (12 g.) was slowly added to a cooled solution of the foregoing nitro-compound (35 g.) in dry pyridine (120 ml.). The mixture was heated at 100° for 2 hr., cooled, and diluted with water, and the product was crystallised from acetic acid and from ethanol, giving the *benzoxazinedione* (86%), m. p. 145—146° (Found: C, 61·8; H, 5·1; N, 7·5. $C_{19}H_{18}O_6N_2$ requires C, 61·6; H, 4·9; N, 7·6%).

1-Camphorimido-5-p-nitrophenoxypentane.—A mixture of 5-p-nitrophenoxypentyl bromide (16·15 g.), (\pm) -camphorimide (10·15 g.), 10·4N-potassium hydroxide (5·4 ml.), and 2-ethoxyethanol (25 ml.) was refluxed for 2 hr., cooled, and diluted with water. The solid was recrystallised from aqueous ethanol, giving the *camphorimide* (71%), m. p. 66—67° (Found: C, 64·9; H, 7·5; N, 7·4. C₂₁H₂₈O₅N₂ requires C, 64·9; H, 7·3; N, 7·2%). N-(5-p-Nitrophenoxypentyl)phthalhydrazide (23%), m. p. 160—162° (from toluene) (Found: C, 61·95; H, 5·35; N, 11·7. C₁₈H₁₉O₅N₅ requires C, 61·8; H, 5·2; N, 11·4%), was similarly made (in dimethylformamide).

1-β-Carboxyacrylamido-5-p-nitrophenoxypentane.—A solution of 1-amino-5-p-nitrophenoxypentane (22·4 g.) in chloroform (100 ml.) was slowly added to a suspension of maleic anhydride (9·8 g.) in chloroform (100 ml.). When the exothermic reaction was over, the solution was refluxed for 1 hr., cooled, washed with 2N-hydrochloric acid and water, dried, and evaporated. Crystallisation of the residue from ethanol gave the maleamic acid (53%), m. p. 91—93° (Found: C, 55·6; H, 5·8; N, 8·3. $C_{15}H_{18}O_6N_2$ requires C, 55·9; H, 5·6; N, 8·7%). Similarly prepared were: 1-p-acetamidophenoxy-5-β-carboxyacrylamidopentane (63%), m. p. 161—163° (from aqueous acetic acid) (Found: C, 60·4; H, 6·8; N, 8·7. $C_{17}H_{22}O_5N_2$ requires C, 61·1; H, 6·6; N, 8·4%); 1-(β-carboxymethyl-β-methylvaleramido)-5-p-nitrophenoxypentane (92%), m. p. 116—117° (also obtained by hydrolysis of the corresponding ethyl ester as described below).

1-Maleimido-5-p-nitrophenoxypentane.—A mixture of the foregoing maleamic acid (17·2 g.), acetic anhydride (18 ml.), and freshly fused sodium acetate (1·8 g.) was stirred at 100° for 1 hr., and excess of the anhydride was removed in vacuo. The residue was triturated with water, and the solid product crystallised from aqueous ethanol and from light petroleum (b. p. 100—120°), giving the maleimide (51%), m. p. 105—107° (Found: C, 59·1; H, 5·1; N, 9·2. $C_{15}H_{16}O_5N_2$ requires C, 59·2; H, 5·3; N, 9·2%).

1-Glutarimido-5-p-nitrophenoxypentane.—A mixture of the glutaramic acid (37.3 g.) and acetyl chloride (100 ml.) was refluxed for 20 min., then evaporated, and the residue was crystallised from methanol, yielding the *glutarimide* (84%), m. p. 87—88° (Found: C, 59.7; H, 6.2; N, 8.9. $C_{16}H_{20}O_5N_2$ requires C, 60.0; H, 6.3; N, 8.75%). 1-(β -Ethyl- β -methylglutarimido)-5-*p*-nitrophenoxypentane was made similarly, but was not obtained crystalline.

 $1-\gamma$ -Ethoxycarbonylbutyramido-5-p-nitrophenoxypentane.—Glutarimide (11·3 g.) and 5-pnitrophenoxypentyl bromide (28·8 g.) were added to a solution of sodium (2·3 g.) in ethanol (150 ml.), and the mixture was refluxed for 20 hr., cooled, diluted with water, and extracted with chloroform. The washed and dried extract was evaporated and the residue was crystallised from benzene, giving the *ethyl ester* (39%), m. p. 90—91·5° (Found: C, 59·0; H, 7·3; N, 7·3; OEt, 12·3%; M, 300. C₁₈H₂₆O₆N₂ requires C, 59·0; H, 7·15; N, 7·6; OEt, 12·3%; M, 366). Hydrolysis with 2N-sodium hydroxide (1 equiv.) afforded the corresponding *acid* (93%), m. p. 118—119° (Found: C, 56·9; H, 6·8; N, 8·3. C₁₆H₂₂O₆N₂ requires C, 56·8; H, 6·6; N, 8·3%) not depressed by a specimen prepared as described above.

When a similar condensation was carried out by using sodium hydroxide (1 equiv.) in aqueous ethanol, the product (33%) was 5-p-nitrophenoxypentyl glutaramate, m. p. 93—95° (from benzene) (Found: C, 56·9; H, 6·3; N, 8·3%; M, 330. $C_{16}H_{22}O_6N_2$ requires C, 56·8; H, 6·6; N, 8·3%; M, 338), identical with a specimen, m. p. 93—94°, prepared (34%) from 5-p-nitrophenoxypentyl bromide and silver glutaramate in dry dioxan. Its structure was confirmed by catalytic reduction to 5-p-aminophenoxypentyl glutaramate (81%), m. p. 116—118° (from ethanol) (Found: N, 9·0. $C_{16}H_{24}O_4N_2$ requires N, 9·1%), and subsequent hydrolysis to 5-p-aminophenoxypentyl pentanol, m. p. 94—96° (Found: N, 7·2. Calc. for $C_{11}H_{17}O_2N$: N, 7·2%) not depressed by an authentic specimen (see Part II).

The amides (listed in Table 1) were prepared from 1-*p*-acetamidophenoxy-5-aminopentane, 1-amino-4-*p*-nitrophenoxybutane, 1-amino-5-*p*-nitrophenoxypentane or 1-amino-8-*p*-nitrophenoxyoctane with the appropriate acid chloride or anhydride either in pyridine or under Schotten-Baumann conditions (in some instances the yields quoted are overall from the phthalimide). NN'-Di-(5-p-nitrophenoxypentyl)terephthalamide (58%), m. p. 154—157° (from ethanol) (Found: N, 9.7. $C_{30}H_{34}O_8N_4$ requires N, 9.6%), and NN'-Di-(5-p-nitrophenoxypentyl)glutaramide (39%), m. p. 127—129° (from acetone) (Found: N, 10.4. $C_{27}H_{36}O_8N_4$ requires N, 10.3%), were prepared similarly.

1-Cyanoacetamido-5-p-nitrophenoxypentane was prepared (68%) from 1-amino-5-p-nitrophenoxypentane and ethyl cyanoacetate in boiling ethanol. After recrystallisation from aqueous ethanol, it had m. p. 85–86° (Found: C, 57.55; H, 5.8; N, 14.3. $C_{14}H_{17}O_4N_3$ requires C, 57.75; H, 5.9; N, 14.4%). Similarly obtained (in the absence of a solvent) was NN'-di-(5-p-nitrophenoxypentyl)oxamide (73%), m. p. 163.5–164.5° (from chloroform-ethanol) (Found: C, 57.25; H, 5.8; N, 11.2. $C_{24}H_{30}O_8N_4$ requires C, 57.4; H, 6.0; N, 11.1%).

1-Ethoxalylamino-5-p-nitrophenoxypentane.—Ethoxalyl chloride (13.65 g.) was slowly added to a cooled solution of 1-amino-5-p-nitrophenoxypentane (21.4 g.) in pyridine (100 ml.). The solution was kept overnight at room temperature, diluted with water and ether, and filtered from the insoluble oxamide (2.15 g.). The ether solution was separated, washed with 2Nhydrochloric acid and water, dried, and evaporated. The residue was repeatedly extracted with boiling light petroleum (b. p. 100—120°). The cooled extracts deposited the *ethoxalyl derivative* (27°₀), m. p. 85—87° (Found: C, 55.9; H, 5.95; N, 8.8. $C_{15}H_{20}O_6N_2$ requires C, 55.55; H, 6.2; N, 8.6%).

1-Formamido-5-p-nitrophenoxypentane.—A mixture of 1-amino-5-p-nitrophenoxypentane (36·4 g.), concentrated hydrochloric acid (13·95 ml.), and formamide (64·5 ml.) was heated at 145° for 30 min., cooled, and evaporated under reduced pressure. Water (100 ml.) was added to the residue, and the solid product was filtered off, dried, and recrystallised from benzene. The crude nitro-compound was extracted with ether (Soxhlet), and the extract was cooled and filtered, giving the *formamide* (78%), m. p. 71—72° (Found: C, 57·25; H, 6·4; N, 11·3. $C_{12}H_{16}O_4N_2$ requires C, 57·15; H, 6·35; H, 11·1%).

1-Hippuramido-5-p-nitrophenoxypentane.—2-Phenyloxazolone (8.6 g.) was added to a solution of 1-amino-5-p-nitrophenoxypentane (12.0 g.) in chloroform, the solution was evaporated, and the residue was heated at 100° for 30 min. Crystallisation of the residue from ethanol gave the hippuramide (80%), m. p. 145—147° (Found: N, 10.7. $C_{20}H_{23}O_5N_3$ requires N, 10.9%).

1-o-Carboxybenzamido-5-p-nitrophenoxypentane.—1-p-Nitrophenoxy-5-phthalimidopentane (17.7 g.) was refluxed with N-sodium hydroxide (50 ml.) for 15 min. The yellow solution was filtered and the filtrate was acidified with acetic acid. The *acid* was filtered off, washed with dilute acetic acid and water, dried, and recrystallised from chloroform-light petroleum. Its m. p., 118—122°, varied with the rate of heating (Found: C, 61.4; H, 5.5; N, 7.4. $C_{19}H_{20}O_6N_2$ requires C, 61.3; H, 5.4; N, 7.5%).

1-p-Acetamidobenzamido-5-p-nitrophenoxypentane.—(a) Tetraethyl pyrophosphite (2.7 ml.)

was added to a solution of 1-amino-5-p-nitrophenoxypentane (2.24 g.) and p-acetamidobenzoic acid (1.79 g.) in diethyl phosphite (7 ml.), and the mixture was heated at 100° for 1 hr., diluted with water, and cooled. Recrystallisation of the product from 2-ethoxyethanol gave the amide (55%), m. p. 187–188° (Found: N, 10.95. C₂₀H₂₃O₅N₃ requires N, 10.9%).

(b) 1-Amino-5-p-nitrophenoxypentane (11.2 g.) was added to a solution of p-acetamidobenzoic acid (17.9 g.) and toluene-p-sulphonyl chloride (9.52 g.) in pyridine (40 ml.). After 30 min. at room temperature, the mixture was treated with a solution of sodium hydroxide (10 g.) and sodium metabisulphite (5 g.) in water (200 ml.), and the precipitate was filtered off, washed, dried, and recrystallised. The amide (60%) had m. p. 185-186°.

1-Dibenzoylamino-5-p-nitrophenoxypentane.—A solution of 1-amino-5-p-nitrophenoxypentane (2.54 g.) in pyridine (10 ml.) was refluxed with benzoyl chloride (5 ml.) for 1.5 hr., cooled, and diluted with water. After recrystallisation from ethanol, the dibenzoyl derivative (83%) had m. p. 119-120° (Found: N, 6.8. C₂₅H₂₄O₅N₂ requires N, 6.5%).

1-(N-Benzyloxycarbonyl-\(\beta\)-alanyl)amino-5-p-nitrophenoxypentane.—A solution of benzyloxycarbonyl-β-alanine ¹² (24 g.) and 1-amino-5-p-nitrophenoxypentane (24 g.) in diethyl phosphite (75 ml.) was heated with tetraethyl pyrophosphite (30 ml.) at 100° for 30 min., diluted with water, cooled, and filtered. The product was recrystallised from aqueous ethanol; the benzyloxycarbonyl compound (90%) had m. p. 137-138° (Found: N, 9.65. C₂₂H₂₇O₈N₃ requires N, 9.8%).

1-β-Alanylamino-5-p-nitrophenoxypentane.-33% Hydrogen bromide-acetic acid (60 ml.) was added to the foregoing benzyloxycarbonyl derivative (35.05 g.) in a flask fitted with a guard tube (CaCl₂). Evolution of carbon dioxide began at once. After 20 min. the clear solution was treated with dry ether, and the hydroscopic hydrobromide was filtered off, washed with dry ether, and dissolved in water. The solution was basified and extracted with chloroform, the washed and dried extract was evaporated, and the residue was triturated with ether. The solid product (m. p. 85-92°) proved difficult to purify and was used directly for the next stage. A small amount was recrystallised from benzene, giving the β -alanyl compound, m. p. 93-95° (Found: C, 57.6; H, 7.2; N, 13.6. C₁₄H₂₁O₄N₃ requires C, 56.9; H, 7.2; N, 14.2%).

1-p-Nitrophenoxy-5-DL-pantothenamidopentane.—A solution of the foregoing amine (10.36 g.) and DL-pantolactone 13 (4.56 g.) in absolute ethanol (50 ml.) was refluxed for 20 hr., then evaporated. The residue, in ethyl acetate, was washed with 2N-sodium hydroxide, 2N-hydrochloric acid, and water, dried, and evaporated, and the residual oily product (14.6 g.) (Found: N, 9.2. $C_{20}H_{31}O_7N_3$ requires N, 9.9%) was reduced directly to the amine.

1-Cyclohexylamino-5-p-nitrophenoxypentane.—A solution of 5-p-nitrophenoxypentyl bromide (43.2 g.) and cyclohexylamine (19.8 g.) in ethanol (50 ml.) was refluxed for 19 hr., cooled, and filtered. The amine hydrobromide (76%), after recrystallisation from ethanol, had m. p. 221-223° (Found: C, 53·1; H, 7·2; N, 7·35. $C_{17}H_{26}O_3N_2$, HBr requires C, 52·7; H, 7·0; N, 7·2%). The benzoyl derivative had m. p. 78–79° (from aqueous ethanol) (Found: N, 7.0. $C_{24}H_{30}O_4N_2$ requires N, 6.8%).

1-N-Benzyloxybenzamido-5-p-nitrophenoxypentane.—5-p-Nitrophenoxypentyl bromide (44.5 g.) and N-benzyloxybenzamide 14 (35 g.) were added to a solution from sodium (3.5 g.) and dry ethanol (300 ml.), and the mixture was refluxed for 24 hr., filtered from sodium bromide, and concentrated. The residue was dissolved in chloroform, and the solution was washed with 2N-sodium hydroxide and water, dried, concentrated, and diluted with ether, giving the nitroether (46%), m. p. 77-78° (Found: C, 69·1; H, 6·1; N, 6·4. C₂₅H₂₆O₅N₂ requires C, 69·1; H, 6.0; N, 6.45%).

1-Anilino-5-p-nitrophenoxypentane.—A mixture of 5-p-nitrophenoxypentyl bromide (57.6 g.), aniline (50 ml.), and ethanol (200 ml.) was refluxed for 20 hr., concentrated, and diluted with water. Crystallisation of the product from ethanol gave the anilino-derivative (98%), m. p. 87-89° (Found: C, 67.7; H, 6.4; N, 9.1. C₁₇H₂₀O₃N₂ requires C, 68.0; H, 6.7; N, 9.3%). The acetyl derivative was not obtained crystalline and was reduced directly to the amine (see Table 2). The methanesulphonyl derivative (64%) had m. p. 73-74° [from benzene-light petroleum (b. p. 80–100°)] (Found: N, 7.0; S, 8.3. $C_{18}H_{22}O_5N_2S$ requires N, 7.4; S, 8.5%).

 $1-N-Methylmethane sulphonamido-5-p-nitrophenoxy pentane. \\ -1-Methane sulphonamido-5-p-nitrophenoxy pentane. \\ -1-Methan$ nitrophenoxypentane (42.7 g.), water (5 ml.), and methyl iodide (17.4 ml.) were added successively to a solution from sodium $(3 \cdot 5 \text{ g})$ and ethanol (300 ml). The mixture was refluxed for 3 hr.,

¹⁴ Beckman, Ber., 1893, 26, 2631.

 ¹² Sifferd and du Vigneaud, J. Biol. Chem., 1935, 108, 753.
 ¹³ Stiller, Harris, Finkelstein, Keresztesy, and Folkers, J. Amer. Chem. Soc., 1940, 62, 1785.

concentrated, and diluted with water, and the solid product was crystallised from ether, giving the N-methylmethanesulphonamide (78%), m. p. 61–63° (Found: N, 8.6; S, 9.9. $C_{13}H_{20}O_5N_2S$ requires N, 8.9; S, 10.1%).

N-Benzoyldi-(4-p-nitrophenoxypentyl)amine.—A solution of 5-p-nitrophenoxypentyl bromide (28.8 g.) and 1-amino-5-p-nitrophenoxypentane (22.4 g.) in ethanol (250 ml.) was refluxed for 20 hr., cooled, and filtered. The crude hydrobromide (68%) was shaken with benzoyl chloride in acetone–2N-sodium hydroxide, and the product was crystallised from acetone–ether, giving the benzoyl derivative (66%), m. p. 114—115.5° (Found: C, 65.1; H, 6.3; N, 7.8. $C_{29}H_{33}O_7N_3$ requires C, 65.05; H, 6.2; N, 7.8%).

1-Benzoyl-4-p-nitrophenoxybutane was obtained (89%) by condensation of potassium pnitrophenoxide with 4-benzoylbutyl bromide ¹⁰ in 2-ethoxyethanol; after crystallisation from acetic acid, it had m. p. 122—123° (Found: C, 68.3; H, 6.0; N, 4.7. $C_{17}H_{17}O_4N$ requires C, 68.2; H, 5.7; N, 4.7%).

1-Hydroxy-5-p-nitrophenoxy-1-phenylpentane.—A solution of the foregoing nitro-ketone (63 g.) and aluminium isopropoxide (25.2 g.) in propan-2-ol (3 l.) was slowly distilled until no more acetone was obtained (2 hr.). The solution was evaporated, the residue was treated with dilute hydrochloric acid, and the solid was recrystallised from aqueous ethanol, giving the hydroxy-compound (94%), m. p. 61—62° (Found: C, 67.7; H, 6.2; N, 4.75. $C_{17}H_{19}O_4N$ requires C, 67.8; H, 6.3; N, 4.65%).

5-p-Nitrophenoxy-1-phenyl-1-phthalimidopentane.—Phosphorus tribromide (21.6 ml.) was slowly added to a solution of the foregoing hydroxy-compound (54 g.) in benzene (500 ml.), stirred and cooled to 10°; the mixture was then kept overnight at room temperature and treated with water, the benzene layer was separated, and the aqueous layer was extracted with ether. The combined benzene and ether solutions were washed, dried, and evaporated. A mixture of the residual bromo-compound, potassium phthalimide (54 g.), and dry acetone (250 ml.) was stirred and refluxed for 48 hr. The product (34 g.) was isolated in the usual way. Unchanged bromide recovered from the mother-liquors was re-treated with potassium phthalimide in acetone, giving more of the required product (total 51 g., 66%). After recrystallisation from ethanol, the *phthalimido-derivative* had m. p. 131—132° (Found: C, 69·8; H, 4·7; N, 6·6. $C_{25}H_{22}O_5N_2$ requires C, 69·8; H, 5·1; N, 6·5%). Hydrolysis with hydrazine and subsequent benzoylation afforded 1-benzamido-5-p-nitrophenoxy-1-phenylpentane (69% overall), m. p. 116—118° (from benzene) (Found: C, 71·6; H, 5·9. $C_{24}H_{24}O_4N_2$ requires C, 71·8; H, 5·9%).

1-p-Nitrophenoxy-5-2'-phthalimidoethoxypentane.—1-2'-Hydroxyethoxy-5-p-nitrophenoxypentane¹⁵ was converted by toluene-p-sulphonyl chloride in pyridine into the toluene-p-sulphonyl derivative (81%), m. p. 49—50° (Found: C, 56.95; H, 5.8; N, 3.4. C₂₀H₂₅O₇NS requires C, 56.7; H, 5.9; N, 3.3%), which was condensed with potassium phthalimide in the usual way, giving the phthalimido-derivative (65%), m. p. 78—79° (from methanol) (Found: C, 63.5; H, 5.9; N, 6.9. C₂₁H₂₂O₆N₂ requires C, 63.3; H, 5.5; N, 7.0%).

1-(1,2-Dihydro-2-oxo-pyrid-1-yl)-5-p-nitrophenoxypentane.—A mixture of 5-p-nitrophenoxypentyl iodide (Part II) (102 g.), the sodium derivative (36 g.) of 2-pyridone, ethanol (400 ml.), and water (200 ml.) was refluxed for 24 hr., ethanol was distilled off, and the residue was diluted with water. The solid product was recrystallised from acetone, giving the nitro-ether (47%), m. p. 103° (Found: C, 63·7; H, 6·2; N, 9·1. $C_{16}H_{18}O_4N_2$ requires C, 63·6; H, 6·0; N, 9·3%). From the mother-liquors a small amount of 1-p-nitrophenoxy-5-pyrid-2'-yloxypentane (Part II) was obtained.

1-(2,3-Dihydro-3-oxobenzisothiazol-2-yl)-5-p-nitrophenoxypentane.—A mixture of 5-p-nitrophenoxypentyl bromide (2.88 g.), the sodium derivative (1.73 g.) of 2,3-dihydro-3-oxobenzisothiazole,¹⁶ and 2-ethoxyethanol (10 ml.) was refluxed for 20 hr., cooled, and diluted with water. The solid product was dissolved in chloroform, the solution was washed with dilute sodium hydroxide and water, dried, and evaporated, and the residue was triturated with ether. Recrystallisation of the solid from ethanol yielded the *nitro-ether* (39%), m. p. 109—111° (Found: N, 7.5; S, 9.0. $C_{18}H_{18}O_4N_2S$ requires N, 7.8; S, 8.9%). Oxidation with 30% hydrogen peroxide in acetic acid at 100° gave the known saccharin derivative,¹ m. p. and mixed m. p. 126— 127°.

l-p-Acetamidophenoxy-5-(2,3-dihydro-3-oxobenzisothiazol-2-yl)pentane (42%), m. p. 170–171° (from ethanol) (Found: C, 61.7; H, 6.6; N, 7.05; S, 8.4. $C_{20}H_{22}O_4N_2S$ requires C, 62.1;

¹⁵ May and Baker Ltd., B.P. 770,870.

¹⁶ McClelland and Gait, J., 1926, 923.

H, 5.7; N, 7.25; S, 8.3%) was similarly prepared. When 5-*p*-nitrophenoxypentyl bromide (3.15 g.) was condensed with 2,3-dihydro-3-oxobenzisothiazole (1.65 g.) by using potassium carbonate (0.76 g.) in acetone (50 ml.), the product (1.9 g.) had m. p. 97—99° (from acetic acid) (Found: C, 59.7; H, 5.0; N, 7.5; S, 9.0%; M, 350. $C_{18}H_{18}O_4N_2S$ requires C, 60.3; H, 5.1; N, 7.8; S, 8.9%; M, 358), depressed to below 90° by the foregoing nitro-compound, and was probably 1-p-nitrophenoxy-5-benzisothiazol-3'-yloxypentane.

3-(5-p-Nitrophenoxypentyl)rhodanine.—Carbon disulphide (8·4 ml.) and dimethylformamide (60 ml.) were added successively to a solution of 5-amino-1-p-nitrophenoxypentane (32 g.) in dry toluene (100 ml.). After 30 min. the solution was cooled, treated with mercuric oxide (32 g.), and shaken for 30 min., then filtered from black mercuric sulphide, and the filtrate was treated with 90% mercaptoacetic acid (7·3 g.). The solution was heated at 100° for 30 min., concentrated, and diluted with water, and the solid product was recrystallised from ethanol, giving the rhodanine (68%), m. p. 112—113° (Found: C, 49·6; H, 5·1; S, 18·8. C₁₄H₁₆O₄N₂S₂ requires C, 49·4; H, 4·7; S, 18·8%). The 5-benzylidene-derivative, prepared (96%) by heating the rhodanine (30 g.) with benzaldehyde (20 ml.), acetic acid (200 ml.), and concentrated sulphuric acid (40 ml.) at 100° for 3 hr., crystallised from acetic acid and had m. p. 143—144° (Found: N, 6·4; S, 14·9. C₂₁H₂₀O₄N₂S₂ requires N, 6·5; S, 14·95%).

3-(5-p-Nitrophenoxypentyl)thiazolidine-2,4-dione.—Thiazolidine-2,4-dione (14·1 g.) and 5-pnitrophenoxypentyl iodide (49·7 g.) were added successively to a solution from sodium (3·43 g.) and dry ethanol (200 ml.), and the mixture was refluxed for 20 hr., cooled, and filtered. The solid was washed with cold ethanol and water, and recrystallised from ethanol, giving the thiazolidine-2,4-dione (46%), m. p. 118—119° (Found N, 8·55; S, 9·7. $C_{14}H_{16}O_5N_2S$ requires N, 8·6; S, 9·8%).

N-(5-p-Nitrophenoxypentyl)butane-1,4-sultam—Butane-1,4-sultam¹⁷ (2 g.) was dissolved in a solution from sodium (0.35 g.) and dry ethanol (10 ml.), and a solution from 5-p-nitrophenoxypentyl bromide (4.3 g.) in dry ethanol (10 ml.) was added. The mixture was refluxed for 3 hr., concentrated, diluted with water, and filtered. Recrystallisation of the solid from methanol yielded the sultam (79%), m. p. 89—90° (Found: C, 53.0; H, 6.5; N, 8.2; S, 9.0. $C_{15}H_{22}O_5N_2S$ requires C, 52.6; H, 6.4; N, 8.2; S, 9.35%). N-(5-p-Nitrophenoxypentyl)naphthalene-1,8-sultam (59%), m. p. 119° (from ethanol) (Found: N, 6.9; S, 8.0. $C_{21}H_{22}O_5N_2S$ requires N, 6.8; S, 7.8%), was similarly prepared from naphthalene-1,8-sultam.¹⁸

Primary amines.

1-p-Aminophenoxy-7-hexahydrophthalimidoheptane.—When 1-p-nitrophenoxy-7-phthalimidoheptane (43.8 g.) was reduced in ethanol (350 ml.) over 2% platinum dioxide at 70° and 56 lb. per sq. inch hydrogen pressure, the uptake reached 133% of theory for $NO_2 \longrightarrow NH_2$. The cooled solution deposited 1-p-aminophenoxy-7-phthalimidoheptane (55%), m. p. 107—109° [after recrystallisation from chloroform-light petroleum (b. p. 60—80°)]. Concentration of the mother-liquors afforded the hexahydro-compound (27%) which, after recrystallisation from chloroform-light petroleum, had, m. p. 73—75° (Found: C, 70.2; H, 7.9; N, 7.8. $C_{21}H_{30}O_3N_2$ requires C, 70.3; H, 8.4; N, 7.8%).

1-p-Aminophenoxy-5-maleimidopentane.—1-Maleimido-5-p-nitrophenoxypentane (5.9 g.) was added to a solution of stannous chloride dihydrate (18 g.) in warm concentrated hydrochloric acid (27 ml.). The solution was kept for 5 min. at 100°, then slowly poured into a stirred mixture of 50% aqueous sodium hydroxide (50 ml.) and chloroform (100 ml.) maintained at 0°. The chloroform solution was immediately separated, washed, dried, concentrated, and diluted with light petroleum. Recrystallisation of the crystalline product from ethyl acetate-light petroleum gave the amine (71%), m. p. 122—124° (Found: C, 64·7; H, 7·2; N, 10·0. $C_{15}H_{18}O_3N_2$ requires C, 65·7; H, 6·6; N, 10·2%). The methanesulphonate had m. p. 194—195° (Found: C, 51·4; H, 5·9; N, 7·75; S, 9·1. $C_{15}H_{18}O_3N_2$, CH₄O₃S requires C, 51·9; H, 6·0; N, 7·6; S, 8·65%) (from ethanol). Both the base and the methanesulphonate gave consistently low carbon analyses.

3-(5-p-Aminophenoxypentyl)rhodanine (40%), m. p. 104—106° (from ethanol) (Found: C, 54·1; H, 5·9; N, 8·9. $C_{14}H_{18}O_2N_2S_2$ requires C, 54·1; H, 5·8; N, 9·0%), and 3-(5-p-aminophenoxypentyl)-5-benzylidenerhodanine (73%) (acetic acid used as solvent), m. p. 133—135°

¹⁷ Dirscherl and Weingarten, Annalen, 1951, 574, 137.

¹⁸ Dannerth, J. Amer. Chem. Soc., 1907, 29, 1319.

(from 2-ethoxyethanol) (Found: C, 63·1; H, 5·4; N, 6·7. $C_{21}H_{22}O_2N_2S_2$ requires C, 63·3; H, 5·5; N, 7·0%), were similarly prepared. 3-(5-p-Aminophenoxypentyl)thiazolidine-2,4-dione, m. p. 107—109° (from ethanol) (Found: C, 57·3; H, 6·1; N, 9·2. $C_{14}H_{18}O_3N_2S$ requires C, 57·2; H, 6·1; N, 9·5%), was prepared (54%) by reducing the corresponding nitro-compound with stannous chloride or, preferably, with reduced iron powder and aqueous acetic acid.

1-p-Aminophenoxy-5-cyanoacetamidopentane.—A mixture of 1-amino-5-p-aminophenoxypentane (14.55 g.), ethyl cyanoacetate (8.36 g.), and methanol (20 ml.) was kept for 5 days in a stoppered flask. The solid was recrystallised from ethanol, giving the cyanoacetamide (81%), m. p. 92—93° (Found: C, 64.4; H, 7.2; N, 16.0. $C_{14}H_{19}O_2N_3$ requires C, 64.35; H, 7.2; N, 16.1%). The acetyl derivative, m. p. 173—175° (from ethanol) (Found: N, 13.8. $C_{16}H_{21}O_3N_3$ requires N, 13.85%), was also obtained directly from 1-p-acetamidophenoxy-5-aminopentane and ethyl cyanoacetate.

Similarly prepared were 1-p-aminophenoxy-5-dichloroacetamidopentane (experiment by Mr. D. E. WRIGHT) (13%), m. p. 81–82° (from benzene–light petroleum) (Found: N, 9.0; Cl, 23.0. $C_{13}H_{18}O_2N_2Cl_2$ requires N, 9.2; Cl, 23.2%), and 1-p-aminophenoxy-5-trichloroacetamidopentane (66%), m. p. 97–99° (from ether) (Found: N, 7.9; Cl, 31.65. $C_{13}H_{17}O_2N_2Cl_3$ requires N, 8.2; Cl, 31.4%).

1-p-Aminophenoxy-5-phthalimidinopentane.—Concentrated hydrochloric acid (100 ml.) was added during 1 hr. to a stirred, refluxing mixture of 1-p-aminophenoxy-5-phthalimidopentane (32·4 g.), tin (25 g.) and ethanol (200 ml.). After a further 17 hr. the solution was filtered and the cooled filtrate was slowly added to 50% aqueous sodium hydroxide (200 ml.). The precipitate was filtered off, washed with water, and extracted with boiling ethanol (400 ml.). The cooled extract afforded the *phthalimidine* (63%), m. p. 143—144° (Found: C, 73·7; H, 7·1; N, 8·9. C₁₉H₂₂O₂N₂ requires C, 73·5; H, 7·15; N, 9·0%).

Except where stated, the amines in Table 2 were prepared by catalytic reduction of the corresponding nitro-compounds, usually over Raney nickel in ethanol, 2-ethoxyethanol, or dimethylformamide.

N-Substituted amines.

1 - p - Dimethylaminophenoxy-3 - phthalimidopropane. — 1 - p - Aminophenoxy-3 - phthalimidopropane, m. p. 92—93° (prepared by reduction of the nitro-compound; lit.,¹⁹ m. p. 92—94°), was converted by methyl iodide and sodium carbonate in ethanol into the quaternary iodide (100%), m. p. 203—206° (from water), which was pyrolysed under reduced pressure, giving 1-p-dimethylaminophenoxy-3-phthalimidopropane (100%), m. p. 121—122° (from ethanol) (Found: C, 70.7; H, 6.3; N, 8.4. Calc. for $C_{19}H_{20}O_3N_2$: C, 70.4; H, 6.2; N, 8.6%) (lit.,¹¹ m. p. 159.6—160.9°).

1-Benzenesulphonamido-5-p-dimethylaminophenoxypentane, m. p. 71—72.5° (from ether) (Found: N, 7.5; S, 8.9. $C_{19}H_{26}O_3N_2S$ requires N, 7.7; S, 8.8%), was similarly obtained (96%) from its methiodide (96%), m. p. 183—185° (from water) (Found: N, 5.5; I, 25.4. $C_{20}H_{29}O_3N_2SI$ requires N, 5.55; I, 25.15%).

1-(p-N-Methylacetamidophenoxy)-5-phthalimidopentane, prepared (53%) from p-N-methylacetamidophenol, 5-phthalimidopentyl bromide, and sodium ethoxide in ethanol, had m. p. 83—85° (from chloroform-ether) (Found: N, 7.6. $C_{22}H_{24}O_4N_2$ requires N, 7.4%). 1-(p-N-Methylbenzamidophenoxy)-5-phthalimidopentane, m. p. 121—124° (from methanol) (Found: N, 6.2. $C_{22}H_{26}O_4N_2$ requires N, 6.3%), was similarly obtained.

1-Amino-5-p-methylaminophenoxypentane, prepared by refluxing the foregoing acetyl derivative with concentrated hydrochloric acid, had m. p. 76–79° [from light petroleum (b. p. 60– 80°)], b. p. 200–205°/15 mm. (Found: C, 69·2; H, 10·1; N, 13·3. $C_{12}H_{20}ON_2$ requires C, 69·2; H, 9·7; N, 13·4%). It decomposed on storage.

1-Benzamido-5-(p-N-methylacetamidophenoxy)pentane.—The corresponding 5-phthalimidocompound was treated with aqueous-alcoholic hydrazine, as previously described, and the amine formed was benzoylated, yielding the benzamide (61% overall), m. p. 110—112° (from acetonelight petroleum) (Found: N, 7.95. $C_{21}H_{26}O_3N_2$ requires N, 7.9%). 1-Benzamido-5-(p-Nmethylformamidophenoxy)pentane, m. p. 115—116° (from acetone-ether) (Found: C, 71.05; H, 7.0; N, 8.3. $C_{20}H_{24}O_3N_2$ requires C, 70.4; H, 7.0; N, 8.2%), was similarly prepared (12% overall). Partial hydrolysis of either the N-formyl or the N-acetyl derivative, with aqueous hydrochloric acid (1 equiv.) in acetic acid, then afforded 1-benzamido-5-p-methylaminophenoxypentane (60%), m. p. 91—92° (from acetone-light petroleum) (Found: C, 73.5; H, 7.7; N, 8.9.

¹⁹ Matejka and Robinson, J., 1934, 1324.

 $C_{19}H_{24}O_2N_2$ requires C, 73·45; H, 7·7; N, 9·0%). The N-benzoyl derivative had m. p. 111—113° (from benzene-ether) (Found: C, 75·0; H, 6·3; N, 6·6. $C_{26}H_{28}O_3N_2$ requires C, 75·0; H, 6·8; N, 6·7%).

1-Benzenesulphonamido-5-(p-N-methylacetamidophenoxy)pentane, m. p. 109–111° (from toluene-light petroleum) (Found: N, 7.05; S, 8.4. $C_{20}H_{26}O_4N_2S$ requires N, 7.2; S, 8.2%), was similarly prepared and was hydrolysed to 1-benzenesulphonamido-5-p-methylaminophenoxy-pentane (62% overall), m. p. 83–85° (from ethanol) (Found: N, 7.8; S, 9.6. $C_{18}H_{24}O_3N_2S$ requires N, 8.0; S, 9.2%). The latter base, on treatment with ethylene chlorohydrin and calcium carbonate in boiling water, yielded 1-benzenesulphonamido-5-[p-(2-hydroxy-N-methyl-ethylamino)phenoxy]pentane (76%), m. p. 76–78° (from benzene-light petroleum) (Found: N, 6.95; S, 8.3. $C_{20}H_{28}O_4N_2S$ requires N, 7.1; S, 8.2%).

1,2-Di-(p-5-benzamidopentyloxyanilino)ethane.—A mixture of 1-p-aminophenoxy-5-benzamidopentane (14.9 g.), ethylene dibromide (4.7 g.), and ethanol (25 ml.) was refluxed for 20 hr., cooled, and filtered. The solid was extracted with water and boiling ethanol. The insoluble residue was the piperazine derivative (3.3 g., see below). The ethanolic extract yielded the dianilinoethane (24%), m. p. 155—157° (from ethanol) (Found: C, 73.1; H, 7.5; N, 8.9. $C_{38}H_{46}O_4N_4$ requires C, 73.3; H, 7.45; N, 9.0%).

1,4-Di-(p-5-benzamidopentyloxyphenyl)piperazine.—The foregoing dianilinoethane (8·1 g.), ethylene dibromide (4·7 g.), and sodium hydrogen carbonate (4·2 g.) were refluxed in 2-ethoxy-ethanol (30 ml.) for 20 hr. The piperazine formed (96%) had m. p. 231—233° (from 2-ethoxy-ethanol) (Found: C, 74·15; H, 7·3; N, 8·6. $C_{40}H_{48}O_4N_4$ requires C, 74·1; H, 7·45; N, 8·6%).

1-p-Di-(2-chloroethyl)aminophenoxy-5-phthalimidopentane.—Phosphorus oxychloride (2·74 ml.), was added to 1-p-di-(2-hydroxyethyl)aminophenoxy-5-phthalimidopentane (B.P. 769,706) (4·12 g.) in dry benzene (15 ml.) and the mixture was refluxed for 2 hr., poured on ice and extracted with benzene. The washed and dried extract was evaporated and the residue was triturated with ether. Crystallisation of the product from ethanol gave the chloroethyl derivative (81%), m. p. 107—108° (Found: N, 6·2; Cl, 15·5. $C_{23}H_{26}O_3N_2Cl_2$ requires N, 6·2; Cl, 15·8%).

1-(3-Chloro-p-tolyl)-4-(p-5-phthalimidopentyloxyphenyl)piperazine.—A mixture of the foregoing chloroethyl compound (17.96 g.), 3-chloro-p-toluidine (5.66 g.), sodium carbonate (4.24 g.), and 2-ethoxyethanol (75 ml.) was refluxed for 20 hr., cooled, and filtered. The solid product was washed with water and crystallised from chloroform-ethanol, yielding the piperazine (63%), m. p. 149—150° (Found: N, 8.2; Cl, 6.7. $C_{30}H_{32}O_3N_3Cl$ requires N, 8.1; Cl, 6.8%).

l-p-(2-Amino-6-methylpyrimid-4-ylamino)phenoxy-5-phthalimidopentane.—A mixture of 2amino-4-chloro-6-methylpyrimidine (14·35 g.), 1-p-aminophenoxy-5-phthalimidopentane (32·4 g.), N-hydrochloric acid (100 ml.), and water (500 ml.) was refluxed for 1 hr., cooled, and made just alkaline to phenolphthalein. Recrystallisation of the solid product from 2-ethoxyethanol gave the pyrimidine derivative (67%), m. p. 211—213° (Found: C, 66·9; H, 5·8; N, 15·9. $C_{24}H_{25}O_3N_5$ requires C, 66·8; H, 5·8; N, 16·2%). Treatment with methyl sulphate in nitrobenzene for 1 hr. at 100° afforded the 1-metho(methyl sulphate) (75%), m. p. 186—188° (from ethanol) (Found: N, 12·8; S, 6·2. $C_{26}H_{31}O_7N_5S$ requires N, 12·5; S, 5·8%).

4-Amidino-4'-(5-phthalimidopentyloxy)diazoaminobenzene.—A solution of sodium nitrite (1.43 g.) in water (24 ml.) was added slowly at 0—5° to a mixture of p-aminobenzamidine dihydrochloride (4.16 g.) and concentrated hydrochloric acid (2.9 ml.) in water (17 ml.). The resulting solution was stirred whilst a solution of 1-p-aminophenoxy-5-phthalimidopentane (6.28 g.) in acetic acid (20 ml.) (at 20°) was quickly added, followed immediately by saturated sodium acetate. The red precipitate was filtered off, washed with water, and recrystallised from ethanol, giving the amidine acetate (68%), m. p. 210—212° (Found: C, 63.3; H, 6.4; N, 15.8. $C_{26}H_{26}O_3N_6,C_2H_4O_2$ requires C, 63.4; H, 5.7; N, 15.8%).

5-Benzamido-1-p-carbamoylmethylaminophenoxypentane.—A mixture of 1-p-aminophenoxy-5-benzamidopentane (19.7 g.), chloroacetamide (6.18 g.), sodium carbonate (3.5 g.), and ethanol (200 ml.) was refluxed for 20 hr., cooled, diluted with water, and filtered. Crystallisation of the product from ethanol gave the *amide* (61%), m. p. 161—163° (Found: C, 68.0; H, 6.6; N, 11.6. $C_{20}H_{25}O_3N_3$ requires C, 67.6; H, 7.1; N, 11.8%).

1-p-D-Glucosylaminophenoxy-5-phthalimidopentane.—A solution of 1-p-aminophenoxy-5-phthalimidopentane (3.24 g.), D-glucose (1.8 g.), and 5% ethanolic calcium chloride (0.5 ml.) in ethanol (20 ml.) was refluxed for 1.5 hr., cooled, and filtered. The glucosylamine (86%) had m. p. 110—115° (Found: C, 60.1; H, 6.55; N, 5.6; H₂O, 3.7. $C_{25}H_{30}O_8N_2,H_2O$ requires C, 59.5; H, 6.4; N, 5.55; H₂O, 3.6%).

1-Benzamido-5-p-D-glucosylaminopentane (83%), m. p. 119—120° (from aqueous methanol) (Found: C, 61·25; H, 7·3; N, 6·0; H_2O , 2·0. $C_{24}H_{32}O_7N_2$, 0·5 H_2O requires C, 61·4; H, 7·1; N, 6·0; H_2O , 1·9%), was similarly prepared.

Miscellaneous compounds.

4-(3-Chloro-p-tolyl)-1-(5-p-nitrophenoxypentyl)piperazine.—A mixture of 5-p-nitrophenoxypentyl bromide (14.6 g.), 1-(3-chloro-p-tolyl)piperazine 20 (10.65 g.), and ethanol (75 ml.) was refluxed for 40 hr., cooled, and filtered from the hydrobromide (76%), m. p. 170—172° (from ethanol) (Found: N, 8.3. $C_{22}H_{28}O_3N_3Cl$,HBr requires N, 8.4%), of the product. The free base had m. p. 101—103° (from ethanol) (Found: N, 10.1; Cl, 8.6. $C_{22}H_{28}O_3N_3Cl$. requires N, 10.05; Cl, 8.5%). Reduction with sodium sulphide gave 1-(5-p-aminophenoxypentyl)-4-(3-chloro-p-tolyl)piperazine (86%), m. p. 95—96° (from ethanol) (Found: N, 10.9; Cl, 9.0. $C_{22}H_{30}ON_3Cl$ requires N, 10.8; Cl, 9.15%).

1,4-Di-(5-p-nitrophenoxypentyl)piperazine.—A mixture of 5-p-nitrophenoxypentyl bromide (5.76 g.) and piperazine hexahydrate (1.94 g.) was heated for 40 hr. at 100°. Refluxing the residue with ethanol afforded the sparingly soluble dihydrobromide (92%), m. p. 253—255° (Found: N, 8.3; Br, 24.5. $C_{26}H_{36}O_6N_4$,2HBr requires N, 8.45; Br, 24.2%). The light-sensitive base had m. p. 122—123° (from ethanol) (Found: C, 62.2; H, 7.6; N, 11.2. $C_{26}H_{36}O_6N_4$ requires C, 62.4; H, 7.25; N, 11.2%). Catalytic reduction yielded 1,4-di-(5-p-aminophenoxypentyl)piperazine (92%), m. p. 124—126° [from ethanol-light petroleum (b. p. 100—120°)] (Found: C, 70.3; H, 9.5; N, 12.5. $C_{26}H_{40}O_2N_4$ requires C, 70.85; H, 9.2; N, 12.7%).

A further group of compounds, prepared by standard methods, and not described previously, is recorded in Table 3.

The authors thank Dr. H. J. Barber, F.R.I.C., for his continued interest, and Mr. S. Bance, A.R.I.C., for the analyses.

The Research Laboratories, May and Baker Ltd., Dagenham, Essex.

[Received, May 7th, 1959.]

²⁰ Farbwerke Hoechst A.G., Belgian Patent 539,950.